TIME TRANSFORMATIONS FOR DELAY DIFFERENTIAL EQUATIONS

被引:10
作者
Brunner, Hermann [1 ]
Maset, Stefano [2 ]
机构
[1] Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, Canada
[2] Univ Trieste, Dipartimento Matemat & Informat, I-34100 Trieste, Italy
基金
加拿大自然科学与工程研究理事会;
关键词
Delay differential equations; variable delays; changes of variable; superconvergence; asymptotic stability; STABILITY;
D O I
10.3934/dcds.2009.25.751
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study changes of variable, called time transformations, which reduce a delay differential equation (DDE) with a variable non-vanishing delay and an unbounded lag function to another DDE with a constant delay. By using this reduction, we can easily obtain a superconvergent integration of the original equation, even in the case of a non-strictly-increasing lag function, and study the type of decay to zero of solutions of scalar linear non-autonomous equations with a strictly increasing lag function.
引用
收藏
页码:751 / 775
页数:25
相关论文
共 11 条
[1]  
[Anonymous], 2003, Numerical Methods for Delay Differential Equations
[2]   ONE-STEP COLLOCATION FOR DELAY DIFFERENTIAL-EQUATIONS [J].
BELLEN, A .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1984, 10 (03) :275-283
[3]  
Bellman R., 1961, Journal of Mathematical Analysis and Applications, V2, P108
[4]  
Hairer E., 1993, Solving ordinary differential equations I: nonstiff problems., V8
[5]  
Iserles A., 1993, EUR J APPL MATH, V4, P1, DOI [DOI 10.1017/S0956792500000966), DOI 10.1017/S0956792500000966, 10.1017/S0956792500000966]
[6]   ASYMPTOTIC STABILITY ANALYSIS OF THETA-METHODS FOR FUNCTIONAL-DIFFERENTIAL EQUATIONS [J].
JACKIEWICZ, Z .
NUMERISCHE MATHEMATIK, 1984, 43 (03) :389-396
[7]  
KATO T, 1971, B AM MATH SOC, V77, P891
[8]  
Koto T, 1999, NUMER MATH, V84, P233, DOI 10.1007/s002119900101
[9]  
LIU Y, 1996, J COMPUT APP MATH, V71, P315
[10]   DYNAMICS OF A CURRENT COLLECTION SYSTEM FOR AN ELECTRIC LOCOMOTIVE [J].
OCKENDON, JR ;
TAYLER, AB .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1971, 322 (1551) :447-&