The study of a turbulent air flow over capillary-gravity water surface waves by direct numerical simulation

被引:5
|
作者
Druzhinin, Oleg [1 ]
Troitskaya, Yuliya [1 ]
Tsai, Wu-ting [2 ]
Chen, Po-then [2 ]
机构
[1] Inst Appl Phys RA5, Moscow, Russia
[2] Taiwan Natl Univ, Dept Engn Sci & Ocean Engn, Taipei, Taiwan
基金
俄罗斯科学基金会;
关键词
Direct numerical simulation; Turbulent wind; Two-dimensional water waves; Capillary ripples; CRITICAL LAYERS; GENERATION; STATISTICS; ENERGY;
D O I
10.1016/j.ocemod.2019.101407
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The present study is concerned with direct numerical simulation (DNS) of turbulent air flow over a waved water surface. Three-dimensional, turbulent Couette flow is considered in DNS as a model of a constant-flux layer in the marine atmospheric surface layer. Two-dimensional stationary waves at the water surface are prescribed and assumed to be unaffected by the air-flow. We consider capillary-gravity water surface waves and are interested in the influence of "parasitic" capillary ripples riding on the carrier, energy-containing waves, on the properties of the air-flow. The surface waves are prescribed and considered to be stationary, the capillaries being in phase with the carrier wave. The surface elevations spectra are also prescribed and mimicking stationary capillaries riding on Stokes waves observed in a 2D numerical simulation of water-surface capillary-gravity waves by Hung & Tsai (2009). The bulk air velocity and the carrier water surface waves lengths are considered in our DNS in the range of 3 to 5 m/s and 3 to 7 cm, respectively. Under these conditions, the capillaries are found to be submerged within the viscous sublayer of the atmospheric boundary layer. Our DNS results show that although the flow fields are characterized by instantaneous separations of the boundary layer, the ensemble (wave-phase) averaged flow fields are non-separating and well predicted by a quasilinear theoretical model. We find also that capillaries mitigate the development of coherent (horse-shoe) vortex structures as compared to the no-ripples flow-case. We further use DNS results and quasilinear model formulation to parameterize the water surface roughness height in terms of critical layer thickness and the amplitude of a dominant, energy-containing harmonic of the water surface elevation spectrum.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] The study of a turbulent air flow over capillary-gravity water surface waves: Characteristics of coherent vortical structures
    Chen, Po-chen
    Tsai, Wu-ting
    Druzhinin, Oleg
    Troitskaya, Yuliya
    OCEAN MODELLING, 2020, 150
  • [2] Numerical Simulation of Unsteady Capillary-Gravity Waves
    Baikov, N. D.
    Petrov, A. G.
    DOKLADY PHYSICS, 2018, 63 (10) : 430 - 434
  • [3] Numerical Simulation of Unsteady Capillary-Gravity Waves
    N. D. Baikov
    A. G. Petrov
    Doklady Physics, 2018, 63 : 430 - 434
  • [4] NUMERICAL SIMULATION OF TURBULENT AIR FLOW OVER WATER WAVES
    Kioka, Wataru
    Katoh, Hiroyuki
    Kitano, Toshikazu
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON ASIAN AND PACIFIC COASTS, VOL 3, 2010, : 185 - +
  • [5] Capillary-gravity waves over a flat surface
    Loginov, BV
    Kuznetsov, AO
    EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 1996, 15 (02) : 259 - 280
  • [6] Numerical study of capillary-gravity solitary waves
    Dias, F
    Menasce, D
    VandenBroeck, JM
    EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 1996, 15 (01) : 17 - 36
  • [7] Numerical calculation of capillary-gravity waves
    R. Wegmann
    Numerische Mathematik, 2002, 92 : 383 - 400
  • [8] Numerical calculation of capillary-gravity waves
    Wegmann, R
    NUMERISCHE MATHEMATIK, 2002, 92 (02) : 383 - 400
  • [9] THE STABILITY OF CAPILLARY-GRAVITY WAVES ON FLOW OVER A WAVY BOTTOM
    MCHUGH, JP
    WAVE MOTION, 1992, 16 (01) : 23 - 31
  • [10] Capillary-gravity water waves: Modified flow force formulation
    Basu, Biswajit
    Martin, Calin-, I
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (12) : 11231 - 11251