Comparative genomics reveals new functional insights in uncultured MAST species

被引:22
作者
Labarre, Aurelie [1 ]
Lopez-Escard, David [1 ]
Latorre, Francisco [1 ]
Leonard, Guy [2 ]
Bucchini, Francois [3 ,4 ]
Obiol, Aleix [1 ]
Cruaud, Corinne [5 ]
Sieracki, Michael E. [6 ]
Jaillon, Olivier [7 ,8 ]
Wincker, Patrick [7 ,8 ]
Vandepoele, Klaas [3 ,4 ,9 ]
Logares, Ramiro [1 ]
Massana, Ramon [1 ]
机构
[1] Inst Ciencies Mar CSIC, Dept Marine Biol & Oceanog, Barcelona, Catalonia, Spain
[2] Univ Oxford, Dept Zool, Oxford, England
[3] Univ Ghent, Dept Plant Biotechnol & Bioinformat, Technol Pk, Ghent, Belgium
[4] VIB Ctr Plant Syst Biol, Technol Pk, Ghent, Belgium
[5] Genoscope, Inst Biol Francois Jacob, Commissariat Energie Atom & Energies Alternat CEA, Evry, France
[6] Natl Sci Fdn, Alexandria, VA USA
[7] Univ Evry, Univ Paris Saclay, CNRS, CEA,Metab Genom,Inst Biol Francois Jacob,Genoscop, F-91000 Evry, France
[8] Res Federat Study Global Ocean Syst Ecol & Evolut, Ghent, Belgium
[9] Univ Ghent, Bioinformat Inst Ghent, F-9052 Paris, France
基金
欧盟地平线“2020”;
关键词
SINGLE-CELL GENOMICS; MICROBIAL RHODOPSINS; GENE PREDICTION; PROTEIN; ALGORITHM; EVOLUTION; LIGHT; DIVERSITY; RESPONSES; MAJORITY;
D O I
10.1038/s41396-020-00885-8
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Heterotrophic lineages of stramenopiles exhibit enormous diversity in morphology, lifestyle, and habitat. Among them, the marine stramenopiles (MASTs) represent numerous independent lineages that are only known from environmental sequences retrieved from marine samples. The core energy metabolism characterizing these unicellular eukaryotes is poorly understood. Here, we used single-cell genomics to retrieve, annotate, and compare the genomes of 15 MAST species, obtained by coassembling sequences from 140 individual cells sampled from the marine surface plankton. Functional annotations from their gene repertoires are compatible with all of them being phagocytotic. The unique presence of rhodopsin genes in MAST species, together with their widespread expression in oceanic waters, supports the idea that MASTs may be capable of using sunlight to thrive in the photic ocean. Additional subsets of genes used in phagocytosis, such as proton pumps for vacuole acidification and peptidases for prey digestion, did not reveal particular trends in MAST genomes as compared with nonphagocytotic stramenopiles, except a larger presence and diversity of V-PPase genes. Our analysis reflects the complexity of phagocytosis machinery in microbial eukaryotes, which contrasts with the well-defined set of genes for photosynthesis. These new genomic data provide the essential framework to study ecophysiology of uncultured species and to gain better understanding of the function of rhodopsins and related carotenoids in stramenopiles.
引用
收藏
页码:1767 / 1781
页数:15
相关论文
共 91 条
  • [1] Modelling emergent trophic strategies in plankton
    Andersen, Ken H.
    Aksnes, Dag L.
    Berge, Terje
    Fiksen, Oyvind
    Visser, Andre
    [J]. JOURNAL OF PLANKTON RESEARCH, 2015, 37 (05) : 862 - 868
  • [2] Biology and systematics of heterokont and haptophyte algae
    Andersen, RA
    [J]. AMERICAN JOURNAL OF BOTANY, 2004, 91 (10) : 1508 - 1522
  • [3] [Anonymous], 2009, ECOLOGY, DOI DOI 10.1890/08-1823.1
  • [4] Xanthorhodopsin:: A proton pump with a light-harvesting carotenoid antenna
    Balashov, SP
    Imasheva, ES
    Boichenko, VA
    Antón, J
    Wang, JM
    Lanyi, JK
    [J]. SCIENCE, 2005, 309 (5743) : 2061 - 2064
  • [5] SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing
    Bankevich, Anton
    Nurk, Sergey
    Antipov, Dmitry
    Gurevich, Alexey A.
    Dvorkin, Mikhail
    Kulikov, Alexander S.
    Lesin, Valery M.
    Nikolenko, Sergey I.
    Son Pham
    Prjibelski, Andrey D.
    Pyshkin, Alexey V.
    Sirotkin, Alexander V.
    Vyahhi, Nikolay
    Tesler, Glenn
    Alekseyev, Max A.
    Pevzner, Pavel A.
    [J]. JOURNAL OF COMPUTATIONAL BIOLOGY, 2012, 19 (05) : 455 - 477
  • [6] The Biomass Composition of the Oceans: A Blueprint of Our Blue Planet
    Bar-On, Yinon M.
    Milo, Ron
    [J]. CELL, 2019, 179 (07) : 1451 - 1454
  • [7] Bacterial rhodopsin:: Evidence for a new type of phototrophy in the sea
    Béjà, O
    Aravind, L
    Koonin, EV
    Suzuki, MT
    Hadd, A
    Nguyen, LP
    Jovanovich, S
    Gates, CM
    Feldman, RA
    Spudich, JL
    Spudich, EN
    DeLong, EF
    [J]. SCIENCE, 2000, 289 (5486) : 1902 - 1906
  • [8] A eukaryotic protein, NOP-1, binds retinal to form an archaeal rhodopsin-like photochemically reactive pigment
    Bieszke, JA
    Spudich, EN
    Scott, KL
    Borkovich, KA
    Spudich, JL
    [J]. BIOCHEMISTRY, 1999, 38 (43) : 14138 - 14145
  • [9] MicRhoDE: a curated database for the analysis of microbial rhodopsin diversity and evolution
    Boeuf, Dominique
    Audic, Stephane
    Brillet-Gueguen, Loraine
    Caron, Christophe
    Jeanthon, Christian
    [J]. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION, 2015,
  • [10] Trimmomatic: a flexible trimmer for Illumina sequence data
    Bolger, Anthony M.
    Lohse, Marc
    Usadel, Bjoern
    [J]. BIOINFORMATICS, 2014, 30 (15) : 2114 - 2120