Self-renewal of human embryonic stem cells is supported by a shortened G1 cell cycle phase

被引:335
作者
Becker, Klaus A.
Ghule, Prachi N.
Therrien, Jaclyn A.
Lian, Jane B.
Stein, Janet L.
Van Wijnen, Andre J.
Stein, Gary S. [1 ]
机构
[1] Univ Massachusetts, Sch Med, Dept Cell Biol, Worcester, MA 01655 USA
[2] Univ Massachusetts, Sch Med, Ctr Canc, Worcester, MA 01655 USA
关键词
HISTONE GENE-TRANSCRIPTION; S-PHASE; MOLECULAR SIGNATURE; HINF-P; DIFFERENTIATION; EXPRESSION; LINES; PROLIFERATION; REPLICATION; DERIVATION;
D O I
10.1002/jcp.20776
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Competency for self-renewal of human embryonic stem (ES) cells is linked to pluripotency. However, there is a critical paucity of fundamental parameters of human ES cell division. In this study we show that human ES cells (HI and H9; NIH-designated WA01 and WA09) rapidly proliferate due to a very short overall cell cycle (15-16 h) compared to somatic cells (e.g., normal diploid IMR90 fibroblasts and NT-2 teratocarcinoma cells). The human ES cell cycle maintains the four canonical cell cycle stages G1, S, G2, and M, but the duration of G1 is dramatically shortened. Bromodeoxyuridine (BrdU) incorporation and FACS analysis demonstrated that 65% of asynchronously growing human ES cells are in S phase. Immunofluorescence microscopy studies detecting BrdU labeled mitotic chromosomes, Ki67 domains, and p220(NPAT) containing Cajal bodies revealed that the durations of the S (similar to 8 h), G2 (similar to 4 h), and M phases(similar to 1 h) are similar in ES and somatic cells. We determined that human ES cells remain viable after synchronization with either nocodazole or the anti-tumor drug Paclitaxel (taxol) and have an abbreviated G1 phase of only 2.5-3 h that is significantly shorter than in somatic cells. Molecular analyses using quantitative RT-PCR demonstrate that human ES cells and somatic cells express similar cell cycle markers. However, among cyclins and cyclin-dependent kinases (CDKs), we observed high mRNA levels for the G1 related CDK4 and cyclin D2 genes. We conclude that human ES cells exhibit unique G1 cell cycle kinetics and use CDK4/cyclin D2 related mechanisms to attain competency for DNA replication.
引用
收藏
页码:883 / 893
页数:11
相关论文
共 50 条
  • [41] Optogenetic stimulation inhibits the self-renewal of mouse embryonic stem cells
    Shaojun Wang
    Lu Du
    Guang-Hua Peng
    Cell & Bioscience, 9
  • [42] Self-Renewal of Bone Marrow Stem Cells by Nanovesicles Engineered from Embryonic Stem Cells
    Jo, Wonju
    Jeong, Dayeong
    Kim, Junho
    Park, Jaesung
    ADVANCED HEALTHCARE MATERIALS, 2016, 5 (24) : 3148 - 3156
  • [43] Embryonic stem cell related gene regulates alternative splicing of transcription factor 3 to maintain human embryonic stem cells' self-renewal and pluripotency
    Xie, Wen
    Liu, Weidong
    Wang, Lei
    Li, Shasha
    Liao, Zilin
    Xu, Hongjuan
    Li, Yihan
    Jiang, Xingjun
    Ren, Caiping
    STEM CELLS, 2024, 42 (06) : 540 - 553
  • [44] Effects of Ionizing Radiation on Self-Renewal and Pluripotency of Human Embryonic Stem Cells
    Wilson, Kitchener D.
    Sun, Ning
    Huang, Mei
    Zhang, Wendy Y.
    Lee, Andrew S.
    Li, Zongjin
    Wang, Shan X.
    Wu, Joseph C.
    CANCER RESEARCH, 2010, 70 (13) : 5539 - 5548
  • [45] T-type Ca2+ channels in mouse embryonic stem cells: modulation during cell cycle and contribution to self-renewal
    Rodriguez-Gomez, Jose A.
    Levitsky, Konstantin L.
    Lopez-Barneo, Jose
    AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2012, 302 (03): : C494 - C504
  • [46] A short G1 phase is an intrinsic determinant of naive embryonic stem cell pluripotency
    Coronado, Diana
    Godet, Murielle
    Bourillot, Pierre-Yves
    Tapponnier, Yann
    Bernat, Agnieszka
    Petit, Maxime
    Afanassieff, Marielle
    Markossian, Suzy
    Malashicheva, Anna
    Iacone, Roberto
    Anastassiadis, Konstantinos
    Savatier, Pierre
    STEM CELL RESEARCH, 2013, 10 (01) : 118 - 131
  • [47] Human Embryonic Stem Cells Are Capable of Executing G1/S Checkpoint Activation
    Barta, Tomas
    Vinarsky, Vladimir
    Holubcova, Zuzana
    Dolezalova, Dasa
    Verner, Jan
    Pospisilova, Sarka
    Dvorak, Petr
    Hampl, Ales
    STEM CELLS, 2010, 28 (07) : 1143 - 1152
  • [48] Integrins regulate mouse embryonic stem cell self-renewal
    Hayashi, Yohei
    Furue, Miho Kusuda
    Okamoto, Tetsuji
    Ohnuma, Kiyoshi
    Myoishi, Yasufumi
    Fukuhara, Yasuaki
    Abe, Takanori
    Sato, J. Denry
    Hata, Ryu-Ichiro
    Asashima, Makoto
    STEM CELLS, 2007, 25 (12) : 3005 - 3015
  • [49] Genomic Integrity Safeguards Self-Renewal in Embryonic Stem Cells
    Su, Jie
    Zhu, Dandan
    Huo, Zijun
    Gingold, Julian A.
    Ang, Yen-Sin
    Tu, Jian
    Zhou, Ruoji
    Lin, Yu
    Luo, Haidan
    Yang, Huiling
    Zhao, Ruiying
    Schaniel, Christoph
    Moore, Kateri A.
    Lemischka, Ihor R.
    Lee, Dung-Fang
    CELL REPORTS, 2019, 28 (06): : 1400 - +
  • [50] LSD1 regulates the balance between self-renewal and differentiation in human embryonic stem cells
    Adamo, Antonio
    Sese, Borja
    Boue, Stephanie
    Castano, Julio
    Paramonov, Ida
    Barrero, Maria J.
    Izpisua Belmonte, Juan Carlos
    NATURE CELL BIOLOGY, 2011, 13 (06) : 652 - U265