Kinetic-Controlled Growth of Bi Nanostructures for Electrocatalytic CO2 Reduction

被引:8
|
作者
Dong, Wan Jae [1 ]
Hong, Dae Myung [1 ]
Park, Jae Yong [1 ]
Kim, Sungjoo [1 ]
Yoo, Chul Jong [2 ]
Lee, Jong-Lam [1 ,2 ]
机构
[1] Pohang Univ Sci & Technol POSTECH, Dept Mat Sci & Engn, Pohang 790784, Gyungbuk, South Korea
[2] Pohang Univ Sci & Technol POSTECH, Div Adv Mat Sci, Pohang 790784, Gyungbuk, South Korea
基金
新加坡国家研究基金会;
关键词
bismuth; nano-sheet; nano-branch; kinetic-controlled growth; carbon dioxide reduction; formic acid;
D O I
10.1149/1945-7111/abdc6f
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Bi-based catalysts have attracted great attention for efficient electrocatalytic carbon dioxide (CO2) reduction to formic acid (HCOOH). However, the effect of the growth kinetics of Bi nanostructures on morphology and their catalytic performance has not been studied. Here, we varied the Bi3+ precursor concentration in the electrolyte to control the electrochemical growth rate of Bi nanostructures. It was found that the growth rate determines not only the geometric structure but also the microstructure of Bi nanostructures. The slow growth with a low precursor concentration (1 mM) produced Bi nano-sheet (NS) with high crystallinity in (012) preferred orientation. But, the polycrystalline Bi nano-branch (NB) with a larger surface area was formed by a faster growth condition (precursor concentration = 30 mM). As a result, Bi NB achieved a higher FEHCOOH of 97.1% than Bi NS (FEHCOOH = 81.5%) at -1.0 V-RHE. This work reveals that the growth condition of the Bi nanostructures plays a significant role in designing the catalysts for the efficient CO2 reduction reaction. (c) 2021 The Electrochemical Society ("ECS"). Published on behalf of ECS by IOP Publishing Limited.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Bimetallic chalcogenides for electrocatalytic CO2 reduction
    Li, Qian
    Wang, Yu-Chao
    Zeng, Jian
    Zhao, Xin
    Chen, Chen
    Wu, Qiu-Mei
    Chen, Li-Miao
    Chen, Zhi-Yan
    Lei, Yong-Peng
    RARE METALS, 2021, 40 (12) : 3442 - 3453
  • [22] Experimental Considerations for Electrocatalytic CO2 Reduction
    Marshall, A. T.
    Lim, C. F. C.
    Ahangari, H. Taleshi
    Harrington, D. A.
    SELECTED PROCEEDINGS FROM THE 232ND ECS MEETING, 2017, 80 (10): : 1191 - 1201
  • [23] Nanoporous materials for electrocatalytic CO2 reduction
    Jiao, Feng
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [24] Alloy Catalysts for Electrocatalytic CO2 Reduction
    Liu, Lizhen
    Akhoundzadeh, Hossein
    Li, Mingtao
    Huang, Hongwei
    SMALL METHODS, 2023, 7 (09):
  • [25] Recent Progress in Electrocatalytic Reduction of CO2
    Ren, Chaojun
    Ni, Wei
    Li, Hongda
    CATALYSTS, 2023, 13 (04)
  • [26] Bimetallic chalcogenides for electrocatalytic CO2 reduction
    Qian Li
    Yu-Chao Wang
    Jian Zeng
    Xin Zhao
    Chen Chen
    Qiu-Mei Wu
    Li-Miao Chen
    Zhi-Yan Chen
    Yong-Peng Lei
    Rare Metals, 2021, 40 : 3442 - 3453
  • [27] Designing Electrolyzers for Electrocatalytic CO2 Reduction
    Gao, Dunfeng
    Wei, Pengfei
    Li, Hefei
    Lin, Long
    Wang, Guoxiong
    Bao, Xinhe
    ACTA PHYSICO-CHIMICA SINICA, 2021, 37 (05)
  • [28] Photocatalytic and photoelectrocatalytic reduction of CO2 using heterogeneous catalysts with controlled nanostructures
    Xie, Shunji
    Zhang, Qinghong
    Liu, Guodong
    Wang, Ye
    CHEMICAL COMMUNICATIONS, 2016, 52 (01) : 35 - 59
  • [29] Tailoring materials for electrocatalytic reduction of CO2
    Saravanan, Karthikeyan
    Keith, John
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252
  • [30] Bi-Doped In2O3 Nanofiber for Efficient Electrocatalytic CO2 Reduction
    Zhao, Yuanxiang
    Lv, Xinchun
    Zhu, Zifan
    Yang, Chen
    Ma, Xintao
    Sun, Yifei
    Alodhayb, Abdullah N.
    Yi, Xiaodong
    Shi, Wei
    Chen, Zhou
    CHEMCATCHEM, 2024,