Extended Dynamic Mode Decomposition with Learned Koopman Eigenfunctions for Prediction and Control

被引:0
作者
Folkestad, Carl [1 ]
Pastor, Daniel [1 ]
Mezic, Igor [3 ]
Mohr, Ryan [2 ]
Fonoberova, Maria [2 ]
Burdick, Joel [1 ]
机构
[1] CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA
[2] AIMDyn Inc, Santa Barbara, CA USA
[3] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA
来源
2020 AMERICAN CONTROL CONFERENCE (ACC) | 2020年
关键词
OPERATOR; SYSTEMS;
D O I
10.23919/acc45564.2020.9147729
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a novel learning framework to construct Koopman eigenfunctions for unknown, nonlinear dynamics using data gathered from experiments. The learning framework can extract spectral information from the full nonlinear dynamics by learning the eigenvalues and eigenfunctions of the associated Koopman operator. We then exploit the learned Koopman eigenfunctions to learn a lifted linear state-space model. To the best of our knowledge, our method is the first to utilize Koopman eigenfunctions as lifting functions for EDMD-based methods. We demonstrate the performance of the framework in state prediction and closed loop trajectory tracking of a simulated cart pole system. Our method is able to significantly improve the controller performance while relying on linear control methods to do nonlinear control.
引用
收藏
页码:3906 / 3913
页数:8
相关论文
共 31 条
[1]   Control Barrier Function Based Quadratic Programs for Safety Critical Systems [J].
Ames, Aaron D. ;
Xu, Xiangru ;
Grizzle, Jessy W. ;
Tabuada, Paulo .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (08) :3861-3876
[2]   Estimation of perturbations in robotic behavior using dynamic mode decomposition [J].
Berger, Erik ;
Sastuba, Mark ;
Vogt, David ;
Jung, Bernhard ;
Ben Amor, Heni .
ADVANCED ROBOTICS, 2015, 29 (05) :331-343
[3]   Extracting spatial-temporal coherent patterns in large-scale neural recordings using dynamic mode decomposition [J].
Brunton, Bingni W. ;
Johnson, Lise A. ;
Ojemann, Jeffrey G. ;
Kutz, J. Nathan .
JOURNAL OF NEUROSCIENCE METHODS, 2016, 258 :1-15
[4]  
Brunton S. L., 2019, Data-driven science and engineering: Machine learning, dynamical systems, and control, DOI 10.1017/9781108380690
[5]  
Brunton StevenL., Discovering governing
[6]   Applied Koopmanism [J].
Budisic, Marko ;
Mohr, Ryan ;
Mezic, Igor .
CHAOS, 2012, 22 (04)
[7]  
Cheng R, 2019, AAAI CONF ARTIF INTE, P3387
[8]  
Duan Y., 2016, PR MACH LEARN RES, P1329, DOI [DOI 10.1109/CVPR.2014.180, 10.5555/3045390.3045531]
[9]  
Folkestad C., 2020, P INT C ROB AUT SEP
[10]  
García J, 2015, J MACH LEARN RES, V16, P1437