Conformal mapping and inverse conductivity problem with one measurement

被引:8
|
作者
Dambrine, Marc [1 ]
Kateb, Djalil [1 ]
机构
[1] Univ Technol Compiegne, Lab Math Appl Compiegne, Ctr Rech Royalieu, F-60200 Compiegne, France
关键词
inverse conductivity problem; conformal mapping;
D O I
10.1051/cocv:2007006
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work deals with a two-dimensional inverse problem in the field of tomography. The geometry of an unknown inclusion has to be reconstructed from boundary measurements. In this paper, we extend previous results of R. Kress and his coauthors: the leading idea is to use the conformal mapping function as unknown. We establish an integrodifferential equation that the trace of the Riemann map solves. We write it as a fixed point equation and give conditions for contraction. We conclude with a series of numerical examples illustrating the performance of the method.
引用
收藏
页码:163 / 177
页数:15
相关论文
共 50 条
  • [41] On an inverse problem for anisotropic conductivity in the plane
    Henkin, Gennadi
    Santacesaria, Matteo
    INVERSE PROBLEMS, 2010, 26 (09)
  • [42] Inverse conductivity problem on Riemann surfaces
    Henkin, Gennadi
    Michel, Vincent
    JOURNAL OF GEOMETRIC ANALYSIS, 2008, 18 (04) : 1033 - 1052
  • [43] INVERSE CONDUCTIVITY PROBLEM WITH INTERNAL DATA
    Triki, Faouzi
    Yin, Tao
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2023, 41 (03): : 483 - 502
  • [44] Inverse Conductivity Problem on Riemann Surfaces
    Gennadi Henkin
    Vincent Michel
    Journal of Geometric Analysis, 2008, 18 : 1033 - 1052
  • [45] The free boundary in an inverse conductivity problem
    Athanasopoulos, I
    Caffarelli, LA
    Salsa, S
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2001, 534 : 1 - 31
  • [46] On the inverse conductivity problem in the half space
    Ciulli, S
    Pidcock, MK
    Sebu, C
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2003, 83 (11): : 755 - 765
  • [47] Lipschitz stability for the inverse conductivity problem
    Alessandrini, G
    Vessella, S
    ADVANCES IN APPLIED MATHEMATICS, 2005, 35 (02) : 207 - 241
  • [48] Inverse conductivity problem for inaccurate measurements
    Cherkaeva, E
    Tripp, AC
    INVERSE PROBLEMS, 1996, 12 (06) : 869 - 883
  • [49] Inverse problem for medium with transient conductivity
    Vorgul, IY
    Nerukh, AG
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 1998, 19 (03) : 192 - 196
  • [50] A MINIMAL OUTER AREA PROBLEM IN CONFORMAL MAPPING
    ZEMYAN, SM
    JOURNAL D ANALYSE MATHEMATIQUE, 1981, 39 : 11 - 23