Existence of hypercyclic polynomials on complex Frechet spaces

被引:6
作者
Martinez-Gimenez, Felix
Peris, Alfredo [1 ]
机构
[1] Univ Politecn Valencia, Dept Matemat Aplicada, Valencia 46022, Spain
关键词
Hypercyclic vectors; Infinite dimensional holomorphy; Polynomials; BANACH-SPACES; CHAOTIC POLYNOMIALS; OPERATORS; SEMIGROUPS; CRITERION;
D O I
10.1016/j.topol.2009.02.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that every complex separable infinite dimensional Frechet space admits hypercyclic polynomials of any degree. This result complements the analogous one for the linear case, due to Ansari, Bernal, Bonet and Peris. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:3007 / 3010
页数:4
相关论文
共 50 条
[41]   Chaotic polynomials on Banach spaces [J].
Peris, A .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 287 (02) :487-493
[42]   Frechet spaces of holomorphic functions without copies of l(1) [J].
Valdivia, M .
MATHEMATISCHE NACHRICHTEN, 1996, 181 :277-287
[43]   Fixed point properties for semigroup of nonexpansive mappings on Frechet spaces [J].
Lau, Anthony To-Ming ;
Takahashi, Wataru .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (11) :3837-3841
[44]   Topological structure of solution sets to differential problems in Frechet spaces [J].
Bakowska, A. ;
Gabor, G. .
ANNALES POLONICI MATHEMATICI, 2009, 95 (01) :17-36
[45]   SET VALUED INTEGRABILITY IN NON SEPARABLE FRECHET SPACES AND APPLICATIONS [J].
Di Piazza, L. ;
Marraffa, V. ;
Satco, B. .
MATHEMATICA SLOVACA, 2016, 66 (05) :1119-1138
[46]   Preduals of spaces of homogeneous polynomials on Lp-spaces [J].
Botelho, Geraldo ;
Pellegrino, Daniel ;
Rueda, Pilar .
LINEAR & MULTILINEAR ALGEBRA, 2012, 60 (05) :565-571
[47]   Inequalities for complex polynomials [J].
Bhat F.A. .
Complex Analysis and its Synergies, 2022, 8 (4)
[48]   Operators between different weighted Frechet and (LB)-spaces of analytic functions [J].
Kizgut, Ersin .
TURKISH JOURNAL OF MATHEMATICS, 2021, 45 (02) :1015-1029
[49]   Orbits of homogeneous polynomials on Banach spaces [J].
Cardeccia, Rodrigo ;
Muro, Santiago .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2021, 41 (06) :1627-1655
[50]   Translation invariant linear spaces of polynomials [J].
Kiss, Gergely ;
Laczkovich, Miklos .
FUNDAMENTA MATHEMATICAE, 2023, 260 (02) :163-179