Modelling directional effects on remotely sensed land surface temperature

被引:59
|
作者
Ermida, Sofia L. [1 ]
DaCamara, Carlos C. [1 ]
Trigo, Isabel F. [2 ]
Pires, Ana C. [2 ]
Ghent, Darren [3 ]
Remedios, John [3 ]
机构
[1] Univ Lisbon, IDL, Lisbon, Portugal
[2] IPMA, Dept Meteorol & Geophys, Lisbon, Portugal
[3] Univ Leicester, Leicester LE1 7RH, Leics, England
关键词
Land surface temperature; Directional effects; Kernel model; IN-SITU MEASUREMENTS; SKIN TEMPERATURE; ANGULAR VARIATIONS; VALIDATION; EMISSIVITY; ANISOTROPY; MSG/SEVIRI; PRODUCTS;
D O I
10.1016/j.rse.2016.12.008
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Land surface temperature (LST) is a markedly directional variable and its remotely sensed measurement may be strongly affected by viewing and illumination geometries. This study proposes the use of LST products collocated in space and time, but obtained with different viewing angles, to calibrate a simple model capable of characterizing the LST angular variability. The exercise is performed using MODIS (Aqua and Terra) and SEVIRI (Meteosat) LST products, for an area covering Mediterranean Europe and Northern Africa and encompassing the full years of 2011,2012, 2013 and 2014. The approach relies on a kernel model that is composed by an "emissivity kernel" and a "solar kernel", associated to observation angle anisotropy and to shadowing/sunlit effects on the surface, respectively. The spatial distribution of the kernel coefficients is shown to reflect characteristics of the landscape, both in terms of vegetation cover and topography. Model performance is assessed through several comparison exercises over the 4-year period under analysis. Cross-validation results show that the angular correction by the kernel model leads to a decrease of the root mean square difference between SEVIRI and MODIS daytime (night-time) LST products, from the original uncorrected values of 3.5 K (1.5 K) to 2.3 K (1.3 K). Comparison of both MSG and MODIS LST products against in situ daytime measurements gathered over 2 years at a validation site in Evora (Portugal) reveals that the angular correction leads to a decrease in root mean square error from 4.6 K (2.0 K) to 3.8 K (1.9 K) for MODIS (SEVIRI). The kernel model may be a useful tool to quantify the LST uncertainties associated with viewing and illumination angles. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:56 / 69
页数:14
相关论文
共 50 条
  • [21] Remotely sensed surface temperature observations in HAPEX
    Schmugge, T.J.
    Goutorbe, J.P.
    Digest - International Geoscience and Remote Sensing Symposium (IGARSS), 1989, 4 : 2127 - 2129
  • [22] A One-Source Approach for Estimating Land Surface Heat Fluxes Using Remotely Sensed Land Surface Temperature
    Yang, Yongmin
    Qiu, Jianxiu
    Su, Hongbo
    Bai, Qingmei
    Liu, Suhua
    Li, Lu
    Yu, Yilei
    Huang, Yaoxian
    REMOTE SENSING, 2017, 9 (01)
  • [23] Estimation of evapotranspiration using remotely sensed land surface temperature and the revised three-temperature model
    Xiong, Yu Jiu
    Qiu, Guo Yu
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2011, 32 (20) : 5853 - 5874
  • [24] Remotely Sensed Land Surface Temperature-Based Water Stress Index for Wetland Habitats
    Ciezkowski, Wojciech
    Szporak-Wasilewska, Sylwia
    Kleniewska, Malgorzata
    Jozwiak, Jacek
    Gnatowski, Tomasz
    Dabrowski, Piotr
    Goraj, Maciej
    Szatylowicz, Jan
    Ignar, Stefan
    Chormanski, Jaroslaw
    REMOTE SENSING, 2020, 12 (04)
  • [25] Identification of geothermal potential based on land surface temperature derived from remotely sensed data
    Jianyu Liu
    Jiangqin Chao
    Zhifang Zhao
    Fei Zhao
    Shiguang Xu
    Zhibin Lai
    Haiying Yang
    Qi Chen
    Youle Tu
    Environmental Science and Pollution Research, 2023, 30 : 104726 - 104741
  • [26] Night and day: The influence and relative importance of urban characteristics on remotely sensed land surface temperature
    Logan, T. M.
    Zaitchik, B.
    Guikema, S.
    Nisbet, A.
    REMOTE SENSING OF ENVIRONMENT, 2020, 247 (247)
  • [27] Identification of geothermal potential based on land surface temperature derived from remotely sensed data
    Liu, Jianyu
    Chao, Jiangqin
    Zhao, Zhifang
    Zhao, Fei
    Xu, Shiguang
    Lai, Zhibin
    Yang, Haiying
    Chen, Qi
    Tu, Youle
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (47) : 104726 - 104741
  • [28] Review of methods for land surface temperature derived from thermal infrared remotely sensed data
    Li Z.
    Duan S.
    Tang B.
    Wu H.
    Ren H.
    Yan G.
    Tang R.
    Leng P.
    Yaogan Xuebao/Journal of Remote Sensing, 2016, 20 (05): : 899 - 920
  • [29] Relationships between the three components of air temperature and remotely sensed land surface temperature of agricultural areas in Morocco
    Hadria, R.
    Benabdelouahab, T.
    Mahyou, H.
    Balaghi, R.
    Bydekerke, L.
    El Hairech, T.
    Ceccato, P.
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2018, 39 (02) : 356 - 373
  • [30] Spatial and temporal patterns of land surface fluxes from remotely sensed surface temperatures within an uncertainty modelling framework
    McCabe, MF
    Kalma, JD
    Franks, SW
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2005, 9 (05) : 467 - 480