Evolutionary strategies of optimization

被引:22
作者
Asselmeyer, T
Ebeling, W
Rose, H
机构
[1] Institute of Physics, Humboldt University Berlin, Berlin, D-10115
来源
PHYSICAL REVIEW E | 1997年 / 56卷 / 01期
关键词
D O I
10.1103/PhysRevE.56.1171
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Evolutionary algorithms have proved to be a powerful tool for solving complex optimization problems. The underlying physical and biological strategies can equally be described by a Schrodinger equation. The properties of the dynamics of optimization are encoded in the spectrum of the Hamiltonian. Analytic solutions and convergence velocity of the dynamics are calculated and compared with simulations of the corresponding algorithms. The connection between physical and biological strategies is analyzed. Mixing both strategies creates a basic class of evolutionary algorithms improving robustness and velocity of optimization.
引用
收藏
页码:1171 / 1180
页数:10
相关论文
共 22 条
[1]   Unified description of evolutionary strategies over continuous parameter spaces [J].
Asselmeyer, T ;
Ebeling, W .
BIOSYSTEMS, 1997, 41 (03) :167-178
[2]   BOLTZMANN AND DARWIN STRATEGIES IN COMPLEX OPTIMIZATION [J].
BOSENIUK, T ;
EBELING, W ;
ENGEL, A .
PHYSICS LETTERS A, 1987, 125 (6-7) :307-310
[3]   Optimization on rugged landscapes: A new general purpose monte carlo approach [J].
Dittes, FM .
PHYSICAL REVIEW LETTERS, 1996, 76 (25) :4651-4655
[4]  
EBELING W, 1986, SYST ANAL MODEL SIMU, V3, P377
[5]   SELFORGANIZATION OF MATTER AND EVOLUTION OF BIOLOGICAL MACROMOLECULES [J].
EIGEN, M .
NATURWISSENSCHAFTEN, 1971, 58 (10) :465-+
[6]  
FEISTEL R, 1977, WISS Z U ROSTOCK, V26, P663
[7]  
Fisher R. A., 1999, The Genetical Theory of Natural Selection: A Complete Variorum Edition
[8]  
Fogel D.B., 1995, EVOLUTIONARY COMPUTA
[9]  
FRICKE T, 1994, THESIS U AACHEN
[10]   GENERAL METHOD FOR NUMERICALLY SIMULATING STOCHASTIC TIME EVOLUTION OF COUPLED CHEMICAL-REACTIONS [J].
GILLESPIE, DT .
JOURNAL OF COMPUTATIONAL PHYSICS, 1976, 22 (04) :403-434