On a mixed and multiscale domain decomposition method

被引:32
|
作者
Ladeveze, Pierre [1 ]
Neron, David [1 ]
Gosselet, Pierre [1 ]
机构
[1] Univ Paris 06, Lab Mecan & Technol, ENS, CNRS,UMR8535, F-94235 Cachan, France
关键词
domain decomposition; multiscale; computational mechanics;
D O I
10.1016/j.cma.2006.05.014
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents a reexamination of a multiscale computational strategy with homogenization in space and time for the resolution of highly heterogeneous structural problems, focusing on its suitability for parallel computing. Spatially, this strategy can be viewed as a mixed, multilevel domain decomposition method (or, more accurately, as a "structure decomposition" method). Regarding time, a "parallel" property is also described. We also draw bridges between this and other current approaches. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:1526 / 1540
页数:15
相关论文
共 50 条
  • [1] Design and implementation of a multiscale mixed method based on a nonoverlapping domain decomposition procedure
    Francisco, A.
    Ginting, V.
    Pereira, F.
    Rigelo, J.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2014, 99 : 125 - 138
  • [2] A parallel noninvasive multiscale strategy for a mixed domain decomposition method with frictional contact
    Oumaziz, Paul
    Gosselet, Pierre
    Boucard, Pierre-Alain
    Abbas, Mickael
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2018, 115 (08) : 893 - 912
  • [3] A multiscale domain decomposition approach for parabolic equations using expanded mixed method
    Arshad, Muhammad
    Jabeen, Rukhsana
    Khan, Suliman
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2022, 198 : 127 - 150
  • [4] A domain decomposition method for concurrent coupling of multiscale models
    Thirunavukkarasu, Senganal
    Guddati, Murthy N.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2012, 92 (11) : 918 - 939
  • [5] A multiscale method for periodic structures using domain decomposition and ECM-hyperreduction
    Hernandez, J. A.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 368
  • [6] Multiscale mortar mixed domain decomposition approximations of nonlinear parabolic equations
    Arshad, Muhammad
    Park, Eun-Jae
    Shin, Dongwook
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 97 : 375 - 385
  • [7] A multiscale domain decomposition approach for chemical vapor deposition
    Bogers, J.
    Kumar, K.
    Notten, P. H. L.
    Oudenhoven, J. F. M.
    Pop, I. S.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 246 : 65 - 73
  • [8] MASS CONSERVATIVE DOMAIN DECOMPOSITION PRECONDITIONERS FOR MULTISCALE FINITE VOLUME METHOD
    Xie, Hui
    Xu, Xuejun
    MULTISCALE MODELING & SIMULATION, 2014, 12 (04) : 1667 - 1690
  • [9] A parallel implementation of a mixed multiscale domain decomposition method applied to the magnetostatic simulation of 2D electrical machines
    Ruda, A.
    Louf, F.
    Boucard, P. -A.
    Mininger, X.
    Verbeke, T.
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2024, 235
  • [10] A parallel, multiscale domain decomposition method for the transient dynamic analysis of assemblies with friction
    Odievre, D.
    Boucard, P. -A.
    Gatuingt, F.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (21-22) : 1297 - 1306