Multigrid solvers and multigrid preconditioners for the solution of variational data assimilation problems

被引:2
作者
Debreu, Laurent [1 ]
Neveu, Emilie [1 ]
Simon, Ehouarn [2 ]
Le Dimet, Francois-Xavier [1 ]
Vidard, Arthur [1 ]
机构
[1] INRIA Grenoble Rhone Alpes, LJK, Grenoble, France
[2] Univ Toulouse, INP, IRIT, Toulouse, France
关键词
variational data assimilation; multigrid methods; preconditioning; transport equation; CONJUGATE GRADIENTS; OPTIMIZATION; SYSTEMS;
D O I
10.1002/qj.2676
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
In order to lower the computational cost of the variational data assimilation process, we investigate the use of multigrid methods to solve the associated optimal control system. In a linear advection equation, we study the impact of the regularization term on the optimal control and the impact of discretization errors on the efficiency of the coarse-grid correction step. We show that, even if the optimal control problem leads to the solution of an elliptic system, numerical errors introduced by the discretization can alter the success of the multigrid method. The view of multigrid iteration as a preconditioner for a Krylov optimization method leads to a more robust algorithm. A scale-dependent weighting of the multigrid preconditioner and the usual background-error covariance-matrix based preconditioner is proposed and brings significant improvements.
引用
收藏
页码:515 / 528
页数:14
相关论文
共 30 条
  • [1] [Anonymous], 1994, INTRO CONJUGATE GRAD
  • [2] Multigrid Methods for PDE Optimization
    Borzi, Alfio
    Schulz, Volker
    [J]. SIAM REVIEW, 2009, 51 (02) : 361 - 395
  • [3] Nonsymmetric preconditioning for conjugate gradient and steepest descent methods
    Bouwmeester, Henricus
    Dougherty, Andrew
    Knyazev, Andrew V.
    [J]. INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, ICCS 2015 COMPUTATIONAL SCIENCE AT THE GATES OF NATURE, 2015, 51 : 276 - 285
  • [4] BRANDT A, 1982, LECT NOTES MATH, V960, P220
  • [5] Briggs W. L., 2000, SOC IND APPL MATH, V2nd, DOI [10.1137/1.9780898719505, DOI 10.1137/1.9780898719505]
  • [6] Background-error correlation model based on the implicit solution of a diffusion equation
    Carrier, Matthew J.
    Ngodock, Hans
    [J]. OCEAN MODELLING, 2010, 35 (1-2) : 45 - 53
  • [7] Efficient methods for computing observation impact in 4D-Var data assimilation
    Cioaca, Alexandru
    Sandu, Adrian
    de Sturler, Eric
    [J]. COMPUTATIONAL GEOSCIENCES, 2013, 17 (06) : 975 - 990
  • [8] Courtier P, 1997, Q J ROY METEOR SOC, V123, P2449, DOI 10.1002/qj.49712354414
  • [9] Accelerating and parallelizing minimizations in ensemble and deterministic variational assimilations
    Desroziers, Gerald
    Berre, Loik
    [J]. QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2012, 138 (667) : 1599 - 1610
  • [10] Evensen G., 2006, Data Assimilation: The Ensemble Kalman Filter