Machine learning techniques for quality of transmission estimation in optical networks

被引:73
作者
Pointurier, Yvan [1 ]
机构
[1] Huawei Technol France, 20 Quai Point Jour, F-92100 Boulogne Billancourt, France
关键词
DIGITAL COHERENT RECEIVERS; DEEP NEURAL-NETWORK; QOT ESTIMATION; NONLINEAR NOISE; JOINT OSNR; PREDICTION; LONG; PARAMETERS; MODEL;
D O I
10.1364/JOCN.417434
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The estimation of the quality of transmission (QoT) in optical systems with machine learning (ML) has recently been the focus of a large body of research. We discuss the sources of inaccuracy in QoT estimation in general; we propose a taxonomy for ML-aided QoT estimation; we briefly review ML-aided optical performance monitoring, a tightly related topic; and we review and compare all recently published ML-aided QoT articles. (C) 2021 Optical Society of America
引用
收藏
页码:B60 / B71
页数:12
相关论文
共 50 条
  • [41] Machine learning in orbit estimation: A survey
    Caldas, Francisco
    Soares, Claudia
    [J]. ACTA ASTRONAUTICA, 2024, 220 : 97 - 107
  • [42] Developing Machine Learning Techniques to Investigate the Impact of Air Quality Indices on Tadawul Exchange Index
    Al-Najjar, Dania
    Al-Najjar, Hazem
    Al-Rousan, Nadia
    Assous, Hamzeh F.
    [J]. COMPLEXITY, 2022, 2022
  • [43] Integrating Knowledge Distillation and Transfer Learning for Enhanced QoT-Estimation in Optical Networks
    Usmani, Fehmida
    Khan, Ihtesham
    Mehran, Arsalan
    Ahmad, Arsalan
    Curri, Vittorio
    [J]. IEEE ACCESS, 2024, 12 : 156785 - 156802
  • [44] Prediction of groundwater quality index in the Gaza coastal aquifer using supervised machine learning techniques
    Aish, Adnan M.
    Zaqoot, Hossam Adel
    Sethar, Waqar Ahmed
    Aish, Diana A.
    [J]. WATER PRACTICE AND TECHNOLOGY, 2023, 18 (03) : 501 - 521
  • [45] Machine Learning-Aided Optical Performance Monitoring Techniques: A Review
    Tizikara, Dativa K.
    Serugunda, Jonathan
    Katumba, Andrew
    [J]. FRONTIERS IN COMMUNICATIONS AND NETWORKS, 2022, 2
  • [46] Machine-Learning Method for Quality of Transmission Prediction of Unestablished Lightpaths
    Rottondi, Cristina
    Barletta, Luca
    Giusti, Alessandro
    Tornatore, Massimo
    [J]. JOURNAL OF OPTICAL COMMUNICATIONS AND NETWORKING, 2018, 10 (02) : A286 - A297
  • [47] IRI Estimation Based on Pavement Distress Type, Density, and Severity: Efficacy of Machine Learning and Statistical Techniques
    Qiao, Yu
    Chen, Sikai
    Alinizzi, Majed
    Alamaniotis, Miltos
    Labi, Samuel
    [J]. JOURNAL OF INFRASTRUCTURE SYSTEMS, 2022, 28 (04)
  • [48] A Comparison of Machine Learning Techniques Applied to Landsat-5 TM Spectral Data for Biomass Estimation
    Lopez-Serrano, Pablito M.
    Lopez-Sanchez, Carlos A.
    Alvarez-Gonzalez, Juan G.
    Garcia-Gutierrez, Jorge
    [J]. CANADIAN JOURNAL OF REMOTE SENSING, 2016, 42 (06) : 690 - 705
  • [49] Modular neural networks for quality of transmission prediction in low-margin optical networks
    Vejdannik, Masoud
    Sadr, Ali
    [J]. JOURNAL OF INTELLIGENT MANUFACTURING, 2021, 32 (02) : 361 - 375
  • [50] Quality monitoring in multistage manufacturing systems by using machine learning techniques
    Ismail, Mohamed
    Mostafa, Noha A.
    El-assal, Ahmed
    [J]. JOURNAL OF INTELLIGENT MANUFACTURING, 2022, 33 (08) : 2471 - 2486