METTL3-mediated m6A modification regulates cell cycle progression of dental pulp stem cells

被引:39
|
作者
Luo, Haiyun [1 ,2 ]
Liu, Wenjing [2 ]
Zhang, Yanli [2 ]
Yang, Yeqing [2 ]
Jiang, Xiao [2 ]
Wu, Shiqing [1 ]
Shao, Longquan [2 ]
机构
[1] Southern Med Univ, Peoples Hosp Shunde 1, Shunde Hosp, Foshan 528308, Peoples R China
[2] Southern Med Univ, Stomatol Hosp, Guangzhou 510280, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Dental pulp; Adult stem cells; RNA epigenetics; Cell apoptosis; Cell cycle;
D O I
10.1186/s13287-021-02223-x
中图分类号
Q813 [细胞工程];
学科分类号
摘要
BackgroundDental pulp stem cells (DPSCs) are a promising cell source in endodontic regeneration and tissue engineering with limited self-renewal and pluripotency capacity. N-6-methyladenosine (m(6)A) is the most prevalent, reversible internal modification in RNAs associated with stem cell fate determination. In this study, we aim to explore the biological effect of m(6)A methylation in DPSCs.Methodsm(6)A immunoprecipitation with deep sequencing (m(6)A RIP-seq) demonstrated the features of m(6)A modifications in DPSC transcriptome. Lentiviral vectors were constructed to knockdown or overexpress methyltransferase like 3 (METTL3). Cell morphology, viability, senescence, and apoptosis were analyzed by beta -galactosidase, TUNEL staining, and flow cytometry. Bioinformatic analysis combing m(6)A RIP and shMETTL3 RNA-seq functionally enriched overlapped genes and screened target of METTL3. Cell cycle distributions were assayed by flow cytometry, and m(6)A RIP-qPCR was used to confirm METTL3-mediated m(6)A methylation.ResultsHere, m(6)A peak distribution, binding area, and motif in DPSCs were first revealed by m(6)A RIP-seq. We also found a relatively high expression level of METTL3 in immature DPSCs with superior regenerative potential and METTL3 knockdown induced cell apoptosis and senescence. A conjoint analysis of m(6)A RIP and RNA sequencing showed METTL3 depletion associated with cell cycle, mitosis, and alteration of METTL3 resulted in cell cycle arrest. Furthermore, the protein interaction network of differentially expressed genes identified Polo-like kinase 1 (PLK1), a critical cycle modulator, as the target of METTL3-mediated m(6)A methylation in DPSCs.ConclusionsThese results revealed m(6)A methylated hallmarks in DPSCs and a regulatory role of METTL3 in cell cycle control. Our study shed light on therapeutic approaches in vital pulp therapy and served new insight into stem cell-based tissue engineering.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] METTL3-mediated m6A modification regulates cell cycle progression of dental pulp stem cells
    Haiyun Luo
    Wenjing Liu
    Yanli Zhang
    Yeqing Yang
    Xiao Jiang
    Shiqing Wu
    Longquan Shao
    Stem Cell Research & Therapy, 12
  • [2] METTL3-Mediated m6A RNA Modification Regulates Corneal Injury Repair
    Dai, Yarong
    Cheng, Maosheng
    Zhang, Siyan
    Ling, Rongsong
    Wen, Jieqi
    Cheng, Yifan
    Huang, Boxuan
    Li, Jinrong
    Dai, Caifeng
    Mao, Shiqing
    Lin, Shuibin
    Shen, Huangxuan
    Jiang, Yizhou
    STEM CELLS INTERNATIONAL, 2021, 2021
  • [3] Mettl3-mediated m6A regulates the fate of bone marrow mesenchymal stem cells and osteoporosis
    Wu, Yunshu
    Xie, Liang
    Wang, Mengyuan
    Guo, Yuchen
    Sheng, Rui
    Li, Jing
    Deng, Peng
    Zheng, Rixin
    Xiong, Qiuchan
    Jiang, Yizhou
    Ye, Ling
    Zhou, Xuedong
    Lin, Shuibin
    Yuan, Quan
    JOURNAL OF BONE AND MINERAL RESEARCH, 2018, 33 : 48 - 48
  • [4] METTL3-Mediated lncSNHG7 m6A Modification in the Osteogenic/Odontogenic Differentiation of Human Dental Stem Cells
    Yang, Yeqing
    Zeng, Junkai
    Jiang, Chong
    Chen, Jiawen
    Song, Ci
    Chen, Ming
    Wu, Buling
    JOURNAL OF CLINICAL MEDICINE, 2023, 12 (01)
  • [5] METTL3-mediated m6A modification of CDCA7 mRNA promotes COAD progression
    Hua, Mei
    Zhai, Xiaolu
    Chen, Ying
    Yin, Dian
    PATHOLOGY RESEARCH AND PRACTICE, 2024, 260
  • [6] Mettl3-mediated m6A regulates spermatogonial differentiation and meiosis initiation
    Xu, Kai
    Yang, Ying
    Feng, Gui-Hai
    Sun, Bao-Fa
    Chen, Jun-Qing
    Li, Yu-Fei
    Chen, Yu-Sheng
    Zhang, Xin-Xin
    Wang, Chen-Xin
    Jiang, Li-Yuan
    Liu, Chao
    Zhang, Ze-Yu
    Wang, Xiu-Jie
    Zhou, Qi
    Yang, Yun-Gui
    Li, Wei
    CELL RESEARCH, 2017, 27 (09) : 1100 - 1114
  • [7] METTL3-mediated m6A modification controls splicing factor abundance and contributes to CLL progression
    Wu, Yiming
    Jin, Meiling
    Fernandez, Mike
    Hart, Kevyn
    Liao, Aijun
    Fernandes, Stacey M.
    McDonald, Tinisha
    Chen, Zhenhua
    Roth, Daniel
    Ghoda, Lucy
    Marcucci, Guido
    Kalkum, Markus
    Pillai, Raju K.
    Danilov, Alexey V.
    Chen, Jianjun
    Brown, Jennifer R.
    Rosen, Steven T.
    Siddiqi, Tanya
    Wang, Lili
    CANCER RESEARCH, 2023, 83 (07)
  • [8] Mettl3-Mediated m6a Modification Is Essential for the Maintenance of Genomic Stability of Erythroid Cells
    Zhang, Linlin
    Zhao, Huizhi
    Wang, Shihui
    Wu, Xueting
    Yang, Qiangian
    Cheng, Ying
    Zhao, Jiangwei
    Zhang, Shijie
    Zhang, Huan
    Chen, Lixiang
    An, Xiuli
    Qu, Xiaoli
    BLOOD, 2024, 144 : 2449 - 2450
  • [9] METTL3-Mediated m6A Modification Links Liver Homeostasis and Pathology
    Ma, Wenbo
    Wu, Tong
    AMERICAN JOURNAL OF PATHOLOGY, 2022, 192 (01): : 18 - 20
  • [10] METTL3-Mediated m6A Modification Regulates the Osteogenic Differentiation through LncRNA CUTALP in Periodontal Mesenchymal Stem Cells of Periodontitis Patients
    Chen, Xin
    Qin, Yuan
    Wang, Xian
    Lei, Hao
    Zhang, Xiaochen
    Luo, Houzhuo
    Guo, Changgang
    Sun, Weifu
    Fang, Shishu
    Qin, Wen
    Jin, Zuolin
    STEM CELLS INTERNATIONAL, 2024, 2024