Fast singular oscillating limits and global regularity for the 3D primitive equations of geophysics

被引:34
作者
Babin, A [1 ]
Mahalov, A
Nicolaenko, B
机构
[1] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
[2] Arizona State Univ, Dept Math, Tempe, AZ 85287 USA
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2000年 / 34卷 / 02期
关键词
fast singular oscillating limits; three-dimensional Navier-Stokes equations; primitive equations for geophysical fluid flows;
D O I
10.1051/m2an:2000138
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Fast singular oscillating limits of the three-dimensional "primitive" equations of geophysical fluid flows are analyzed. We prove existence on infinite time intervals of regular solutions to the 3D "primitive" Navier-Stokes equations for strong stratification (large stratification parameter N). This uniform existence is proven for periodic or stress-free boundary conditions for all domain aspect ratios, including the case of three wave resonances which yield nonlinear "2(1)/(2) dimensional" limit equations for N --> +infinity; smoothness assumptions are the same as for local existence theorems, that is initial data in H-alpha, alpha greater than or equal to 3/4. The global existence is proven using techniques of the Littlewood-Paley dyadic decomposition. Infinite time regularity for solutions of the 3D "primitive" Navier-Stokes equations is obtained by bootstrapping from global regularity of the limit resonant equations and convergence theorems.
引用
收藏
页码:201 / 222
页数:22
相关论文
共 51 条
[1]  
[Anonymous], APPL MATH SCI
[2]  
[Anonymous], STRUCTURE DYNAMICS N
[3]  
Arnold VI., 1965, Trans. Am. Math. Soc. 2nd Ser, V46, P213, DOI [10.1007/BF00275153, 10.1090/trans2/046/11]
[4]  
Avrin J., 1999, APPL ANAL, V71, P197
[5]   Regularity and integrability of rotating shallow-water equations [J].
Babin, A ;
Mahalov, A ;
Nicolaenko, B .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (05) :593-598
[6]   On nonlinear baroclinic waves and adjustment of pancake dynamics [J].
Babin, A ;
Mahalov, A ;
Nicolaenko, B .
THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 1998, 11 (3-4) :215-235
[7]  
Babin A, 1997, ASYMPTOTIC ANAL, V15, P103
[8]  
Babin A, 1996, EUR J MECH B-FLUID, V15, P291
[9]  
Babin A, 1999, INDIANA U MATH J, V48, P1133
[10]   On the regularity of three-dimensional rotating Euler-Boussinesq equations [J].
Babin, A ;
Mahalov, A ;
Nicolaenko, B .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1999, 9 (07) :1089-1121