Characterization of Copper-Graphite Composites Fabricated via Electrochemical Deposition and Spark Plasma Sintering

被引:11
作者
Byun, Myunghwan [1 ]
Kim, Dongbae [2 ]
Sung, Kildong [2 ]
Jung, Jaehan [3 ]
Song, Yo-Seung [4 ]
Park, Sangha [2 ]
Son, Injoon [5 ]
机构
[1] Keimyung Univ, Dept Adv Mat Engn, Daegu 42601, South Korea
[2] Daegu Mechatron & Mat Inst DMI, Adv Mat Res Grp, Daegu 42714, South Korea
[3] Hongik Univ, Dept Mat Sci & Engn, Sejong 30016, South Korea
[4] Korea Aerosp Univ, Dept Mat Engn, Goyang 10540, South Korea
[5] KNU, Dept Mat Sci & Met Engn, Daegu 41566, South Korea
来源
APPLIED SCIENCES-BASEL | 2019年 / 9卷 / 14期
关键词
copper-graphite composites; anisotropic layered structure; spark plasma sintering; Raman spectroscopy; HIGH THERMAL-CONDUCTIVITY; GRAPHENE OXIDE; MANAGEMENT; NANOCOMPOSITES; EFFICIENCY; TRANSPORT; MATRIX; SHEET;
D O I
10.3390/app9142853
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In the present study, we have demonstrated a facile and robust way for the fabrication of Cu-graphite composites (CGCs) with spatially-aligned graphite layers. The graphite layers bonded to the copper matrix and the resulting composite structure were entirely characterized. The preferential orientation and angular displacement of the nano-sized graphite fiber reinforcements in the copper matrix were clarified by polarized Raman scattering. Close investigation on the change of the Raman G-peak frequency with the laser excitation power provided us with a manifestation of the structural and electronic properties of the Cu-graphite composites (CGCs) with spatially-distributed graphite phases. High resolution transmission electron microscopy (TEM) observation and Raman analysis revealed that reduced graphite oxide (rGO) phase existed at the CGC interface. This work is highly expected to provide a fundamental way of understanding how a rGO phase can be formed at the Cu-graphite interface, thus finally envisioning usefulness of the CGCs for thermal management materials in electronic applications.
引用
收藏
页数:10
相关论文
共 39 条
[1]   High thermal conductivity composite of diamond particles with tungsten coating in a copper matrix for heat sink application [J].
Abyzov, Andrey M. ;
Kidalov, Sergey V. ;
Shakhov, Fedor M. .
APPLIED THERMAL ENGINEERING, 2012, 48 :72-80
[2]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[3]  
Balandin AA, 2011, NAT MATER, V10, P569, DOI [10.1038/nmat3064, 10.1038/NMAT3064]
[4]   Microstructural study of vapour grown carbon nanofibre/copper composites [J].
Barcena, Jorge ;
MaudeSa, Jon ;
Coletoa, Javier ;
Baldonedo, Juan L. ;
de Salazar, Jose M. Gomez .
COMPOSITES SCIENCE AND TECHNOLOGY, 2008, 68 (06) :1384-1391
[5]   Nanoplatelet Size to Control the Alignment and Thermal Conductivity in Copper-Graphite Composites [J].
Boden, Andre ;
Boerner, Benji ;
Kusch, Patryk ;
Firkowska, Izabela ;
Reich, Stephanie .
NANO LETTERS, 2014, 14 (06) :3640-3644
[6]   Laser-induced phase separation of silicon carbide [J].
Choi, Insung ;
Jeong, Hu Young ;
Shin, Hyeyoung ;
Kang, Gyeongwon ;
Byun, Myunghwan ;
Kim, Hyungjun ;
Chitu, Adrian M. ;
Im, James S. ;
Ruoff, Rodney S. ;
Choi, Sung-Yool ;
Lee, Keon Jae .
NATURE COMMUNICATIONS, 2016, 7
[7]   Laser-Induced Solid-Phase Doped Graphene [J].
Choi, Insung ;
Jeong, Hu Young ;
Jung, Dae Yool ;
Byun, Myunghwan ;
Choi, Choon-Gi ;
Hong, Byung Hee ;
Choi, Sung-Yool ;
Lee, Keon Jae .
ACS NANO, 2014, 8 (08) :7671-7677
[8]   The Origin of High Thermal Conductivity and Ultra low Thermal Expansion in Copper-Graphite Composites [J].
Firkowska, Izabela ;
Boden, Andre ;
Boemer, Benji ;
Reich, Stephanie .
NANO LETTERS, 2015, 15 (07) :4745-4751
[9]   Thermal Properties of Graphene-Copper-Graphene Heterogeneous Films [J].
Goli, Pradyumna ;
Ning, Hao ;
Li, Xuesong ;
Lu, Ching Yu ;
Novoselov, Konstantin S. ;
Balandin, Alexander A. .
NANO LETTERS, 2014, 14 (03) :1497-1503
[10]   Performance and testing of thermal interface materials [J].
Gwinn, JP ;
Webb, RL .
MICROELECTRONICS JOURNAL, 2003, 34 (03) :215-222