Tuning the Adsorption of Polysulfides in Lithium-Sulfur Batteries with Metal-Organic Frameworks

被引:111
|
作者
Park, Haesun [1 ]
Siegel, Donald J. [1 ,2 ,3 ,4 ,5 ]
机构
[1] Univ Michigan, Mech Engn Dept, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Mat Sci & Engn, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Appl Phys Program, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Michigan Energy Inst, Ann Arbor, MI 48109 USA
[5] Univ Michigan, Joint Ctr Energy Storage Res, Ann Arbor, MI 48109 USA
关键词
LI-S BATTERIES; HIGH-PERFORMANCE; GRAPHENE OXIDE; LONG-LIFE; COORDINATION POLYMER; HYDROGEN STORAGE; METHANE STORAGE; HIGH-CAPACITY; CATHODE; DENSITY;
D O I
10.1021/acs.chemmater.7b01166
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The dissolution of polysulfide (PS) intermediates during discharge is a well-known obstacle to achieving long cycle life in lithium sulfur batteries. Prior work has shown that PS dissolution can be partially suppressed via physical encapsulation of sulfur and PS within a porous cathode support. Metal organic frameworks (MOFs) are crystalline, nanoporous materials with extremely high surface areas, whose structure and composition can be varied extensively. MOFs are promising cathode support materials because the encapsulation afforded by MOF pores can be augmented by chemical adsorption of PS onto coordinately unsaturated metal sites (CUS). Here, we demonstrate that this additive approach-restricting PS dissolution by combining encapsulation and adsorption within a MOF can be tuned to maximize PS anchoring via metal substitution on the CUS. Optimal MOF compositions are pinpointed by computationally screening 16 metal-substituted variants of M-2(dobdc) (MOF-74) for their ability to chemically anchor prototypical species (S-8, Li2S4, and Li2S) present during the cycling of Li-S batteries. Ti-2, Ni-2, and Mo-2(dobdc) are identified as the compositions with the largest affinities for Li2S4 and Li2S. As Ni-2(dobdc) has been synthesized previously, this MOF is proposed as a promising cathode support for Li-S batteries.
引用
收藏
页码:4932 / 4939
页数:8
相关论文
共 50 条
  • [41] Metal-organic framework-based catalysts for lithium-sulfur batteries
    Hu, Xuanhe
    Huang, Tian
    Zhang, Gengyuan
    Lin, Shangjun
    Chen, Ruwei
    Chung, Lai-Hon
    He, Jun
    COORDINATION CHEMISTRY REVIEWS, 2023, 475
  • [42] Metal-organic framework-based separator for lithium-sulfur batteries
    Bai, Songyan
    Liu, Xizheng
    Zhu, Kai
    Wu, Shichao
    Zhou, Haoshen
    NATURE ENERGY, 2016, 1
  • [43] Metal-organic framework-based separator for lithium-sulfur batteries
    Bai S.
    Liu X.
    Zhu K.
    Wu S.
    Zhou H.
    Nature Energy, 2016, Nature Publishing Group (01)
  • [44] Covalent organic frameworks with lithiophilic and sulfiphilic dual linkages for cooperative affinity to polysulfides in lithium-sulfur batteries
    Xiao, Zhubing
    Li, Liuyi
    Tang, Yujiao
    Cheng, Zhibin
    Pan, Hui
    Tian, Dongxu
    Wang, Ruihu
    ENERGY STORAGE MATERIALS, 2018, 12 : 252 - 259
  • [45] Metal-Organic Framework Decorated Polymer Nanofiber Composite Separator for Physiochemically Shielding Polysulfides in Stable Lithium-Sulfur Batteries
    Zheng, Shujun
    Zhu, Xiaobo
    Ouyang, Yue
    Chen, Kai
    Chen, Ai-Long
    Fan, Xiaoshan
    Miao, Yue-E
    Liu, Tianxi
    Xie, Yi
    ENERGY & FUELS, 2021, 35 (23) : 19154 - 19163
  • [46] New Insights into the Anchoring Mechanism of Polysulfides inside Nanoporous Covalent Organic Frameworks for Lithium-Sulfur Batteries
    Song, Xuedan
    Zhang, Mengru
    Yao, Man
    Hao, Ce
    Qiu, Jieshan
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (50) : 43896 - 43903
  • [47] Virtual screening of metal centers in metal-organic frameworks to address the shuttle effect and sluggish kinetics in lithium-sulfur batteries
    Chen, Junhua
    He, Qiu
    Hu, You
    Chen, Xingyu
    Duan, Dingran
    Wang, Fei
    Xiong, Yan
    Zhao, Yan
    APPLIED SURFACE SCIENCE, 2025, 695
  • [48] A novel modified sulfur cathode to facilitate the adsorption and conversion of polysulfides in lithium-sulfur batteries
    Wu, Xiaochen
    Yang, Qi
    Huang, Wenlong
    Na, Ren
    Yu, Yu
    Liu, Huitian
    Liu, Xu
    Liu, Yuansheng
    Cao, Yuhao
    Shan, Zhongqiang
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2022, 26 (05) : 1201 - 1210
  • [49] Revisiting the Role of Polysulfides in Lithium-Sulfur Batteries
    Li, Gaoran
    Wang, Shun
    Zhang, Yining
    Li, Matthew
    Chen, Zhongwei
    Lu, Jun
    ADVANCED MATERIALS, 2018, 30 (22)
  • [50] Reaction between metal disulfides interlayer and polysulfides in lithium-sulfur batteries
    Paolella, Andrea
    Zaghib, Karim
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257