CO2 solubility in multi-component brines containing NaCl, KCl, CaCl2 and MgCl2 at 297 K and 1-14 MPa

被引:44
作者
Jacob, Ruth [1 ]
Saylor, Beverly Z. [1 ]
机构
[1] Case Western Reserve Univ, Dept Earth Environm & Planetary Sci, Cleveland, OH 44106 USA
关键词
Carbon dioxide; Geologic sequestration; CO2; solubility; Multi-component brine; CARBON-DIOXIDE-WATER; AQUEOUS-SOLUTIONS; HIGH-PRESSURE; GEOLOGICAL SEQUESTRATION; MUTUAL SOLUBILITIES; LIQUID-EQUILIBRIUM; HIGH-TEMPERATURES; CO2-H2O MIXTURES; PHASE-EQUILIBRIA; SITE SELECTION;
D O I
10.1016/j.chemgeo.2016.01.013
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Carbon capture and storage (CCS) is a strategy to reduce greenhouse gas emissions by capturing CO2 from point sources and injecting it into deep saline formations. Over time, the injected CO2 dissolves into the saline pore waters forming an aqueous solution that is both a negatively buoyant fluid (sinks) and geologically reactive. Deep saline aquifers are geochemically complex and experimental studies have several gaps in solubility measurements for the multi-component brines that are needed to model the fate and reaction of CO2. New experimental data are presented here for three of the most common salts found in potential carbon storage locations, NaCl, KCl and MgCl2, as well as multi-salt brines including these salts and CaCl2. These experimental data are compared with available literature data and models used to predict CO2 solubility in single-and multi-component brines. Comparison of the experimental data with the models indicates that the reactor does work in the range of temperature, pressure and salinity presented here and that available models can accurately predict the solubility of CO2 in various salt solutions. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:86 / 95
页数:10
相关论文
共 60 条
[11]   THE SOLUBILITY OF CARBON-DIOXIDE IN WATER AT LOW-PRESSURE [J].
CARROLL, JJ ;
SLUPSKY, JD ;
MATHER, AE .
JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA, 1991, 20 (06) :1201-1209
[12]   Solubility of CO2 in water from -1.5 to 100°C and from 0.1 to 100 MPa:: evaluation of literature data and thermodynamic modelling [J].
Diamond, LW ;
Akinfiev, NN .
FLUID PHASE EQUILIBRIA, 2003, 208 (1-2) :265-290
[13]   Sequestration of dissolved CO2 in the Oriskany formation [J].
Dilmore, Robert M. ;
Allen, Douglas E. ;
Jones, J. Richard Mccarthy ;
Hedges, Sheila W. ;
Soong, Yee .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2008, 42 (08) :2760-2766
[14]  
Dodds WS., 1956, IND ENG CHEM CHEM EN, V1, P92
[15]   EXPERIMENTAL MEASUREMENTS OF PHASE-EQUILIBRIA FOR TERNARY AND QUATERNARY SYSTEMS OF GLUCOSE, WATER, CO2 AND ETHANOL WITH A NOVEL APPARATUS [J].
DOHRN, R ;
BUNZ, AP ;
DEVLIEGHERE, F ;
THELEN, D .
FLUID PHASE EQUILIBRIA, 1993, 83 :149-158
[16]  
Drummond S., 1981, Boiling and mixing of hydrothermal fluids: chemical effects on mineral precipitation
[17]   HIGH-PRESSURE PHASE-EQUILIBRIA IN THE CARBON-DIOXIDE NORMAL-HEXADECANE AND CARBON-DIOXIDE WATER-SYSTEMS [J].
DSOUZA, R ;
PATRICK, JR ;
TEJA, AS .
CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 1988, 66 (02) :319-323
[18]   An improved model for the calculation of CO2 solubility in aqueous solutions containing Na+, K+, Ca2+, Mg2+, Cl-, and SO42- [J].
Duan, ZH ;
Sun, R ;
Zhu, C ;
Chou, IM .
MARINE CHEMISTRY, 2006, 98 (2-4) :131-139
[19]   An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar [J].
Duan, ZH ;
Sun, R .
CHEMICAL GEOLOGY, 2003, 193 (3-4) :257-271
[20]   AN EQUATION OF STATE FOR THE CH4-CO2-H2O SYSTEM .1. PURE SYSTEMS FROM 0-DEGREES-C TO 1000-DEGREES-C AND 0 TO 8000 BAR [J].
DUAN, ZH ;
MOLLER, N ;
WEARE, JH .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1992, 56 (07) :2605-2617