Vanishing contact structure problem and convergence of the viscosity solutions

被引:30
作者
Chen, Qinbo [1 ]
Cheng, Wei [2 ]
Ishii, Hitoshi [3 ]
Zhao, Kai [2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Morningside Ctr Math, Beijing, Peoples R China
[2] Nanjing Univ, Dept Math, Nanjing, Jiangsu, Peoples R China
[3] Tsuda Univ, Inst Math & Comp Sci, 2-1-1 Tsuda, Kodaira, Tokyo 1878577, Japan
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Hamilton-Jacobi equation; convergence; vanishing discount; vanishing contact structure; Weak KAM theory; Aubry-Mather theory; HAMILTON-JACOBI EQUATIONS; AUBRY-MATHER THEORY; WEAK KAM THEORY;
D O I
10.1080/03605302.2019.1608561
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article is devoted to studying the vanishing contact structure problem which is a generalization of the vanishing discount problem. Let be a family of Hamiltonians of contact type with parameter and converge to G(x, p). For the contact type Hamilton-Jacobi equation with respect to we prove that, under mild assumptions, the associated viscosity solution converges to a specific viscosity solution u(0) of the vanished contact equation. As applications, we give some convergence results for the nonlinear vanishing discount problem.
引用
收藏
页码:801 / 836
页数:36
相关论文
共 39 条
  • [1] A convergence result for the ergodic problem for Hamilton-Jacobi equations with Neumann-type boundary conditions
    Al-Aidarous, Eman S.
    Alzahrani, Ebraheem O.
    Ishii, Hitoshi
    Younas, Arshad M. M.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2016, 146 (02) : 225 - 242
  • [2] [Anonymous], 1994, MATH APPL
  • [3] [Anonymous], 1996, GRUNDLEHREN MATH WIS
  • [4] Contact Hamiltonian Dynamics: The Concept and Its Use
    Bravetti, Alessandro
    [J]. ENTROPY, 2017, 19 (10)
  • [5] Contact Hamiltonian mechanics
    Bravetti, Alessandro
    Cruz, Hans
    Tapias, Diego
    [J]. ANNALS OF PHYSICS, 2017, 376 : 17 - 39
  • [6] Cannarsa P, 2019, ARXIV180403411
  • [7] SOME PROPERTIES OF VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS
    CRANDALL, MG
    EVANS, LC
    LIONS, PL
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 282 (02) : 487 - 502
  • [8] VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS
    CRANDALL, MG
    LIONS, PL
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 277 (01) : 1 - 42
  • [9] Convergence of the solutions of the discounted equation: the discrete case
    Davini, Andrea
    Fathi, Albert
    Iturriaga, Renato
    Zavidovique, Maxime
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2016, 284 (3-4) : 1021 - 1034
  • [10] Convergence of the solutions of the discounted Hamilton-Jacobi equation
    Davini, Andrea
    Fathi, Albert
    Iturriaga, Renato
    Zavidovique, Maxime
    [J]. INVENTIONES MATHEMATICAE, 2016, 206 (01) : 29 - 55