Generalized harmonic number identities and a related matrix representation

被引:18
作者
Cheon, Gi-Sang [1 ]
El-Mikkawy, Moawwad E. A.
机构
[1] Sungkyunkwan Univ, Dept Math, Suwon 440746, South Korea
[2] Mansoura Univ, Fac Sci, Dept Math, Mansoura 35516, Egypt
关键词
harmonic numbers; Riemann zeta function; Stirling numbers; Bernoulli numbers; symmetric polynomials;
D O I
10.4134/JKMS.2007.44.2.487
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we obtain important combinatorial identities of generalized harmonic numbers using symmetric polynomials. We also obtain the matrix representation for the generalized harmonic numbers whose inverse matrix can be computed recursively.
引用
收藏
页码:487 / 498
页数:12
相关论文
共 12 条
[1]   On Stirling numbers and Euler sums [J].
Adamchik, V .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1997, 79 (01) :119-130
[2]  
[Anonymous], 2003, INTEGERS
[3]   Identities involving elementary symmetric functions [J].
Chaturvedi, S ;
Gupta, V .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (29) :L251-L255
[4]   Harmonic number identities and Hermite-Pade approximations to the logarithm function [J].
Chu, W .
JOURNAL OF APPROXIMATION THEORY, 2005, 137 (01) :42-56
[5]   Hypergeometric series and harmonic number identities [J].
Chu, WC ;
De Donno, L .
ADVANCES IN APPLIED MATHEMATICS, 2005, 34 (01) :123-137
[6]  
COMTET L, 1974, ADV COMBINATORICES
[7]  
Gertsch A, 1997, CR ACAD SCI I-MATH, V324, P7
[8]   On Miki's identity for Bernoulli numbers [J].
Gessel, IM .
JOURNAL OF NUMBER THEORY, 2005, 110 (01) :75-82
[9]   Some classes of infinite series associated with the Riemann Zeta and Polygamma functions and generalized harmonic numbers [J].
Rassias, TM ;
Srivastava, HM .
APPLIED MATHEMATICS AND COMPUTATION, 2002, 131 (2-3) :593-605
[10]   A Stirling like sequence of rational numbers [J].
Santmyer, JM .
DISCRETE MATHEMATICS, 1997, 171 (1-3) :229-235