A meshless local Petrov-Galerkin method for elasto-plastic problems

被引:5
作者
Xiong, Y. B. [1 ]
Long, S. Y. [1 ]
Liu, K. Y. [1 ]
Li, G. Y. [2 ]
机构
[1] Hunan Univ, Dept Mech Engn, Changsha 410082, Hunan, Peoples R China
[2] Hunan Univ, Coll Mech & Automot Engn, Changsha, Hunan, Peoples R China
来源
COMPUTATIONAL METHODS, PTS 1 AND 2 | 2006年
关键词
elasto-plastic problem; MLPG; MLS; increment tangent stiffness method;
D O I
10.1007/978-1-4020-3953-9_72
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A meshless local Petrov-Galerkin method (MLPG) is presented for solving the clasto-plasticity problem in the paper. It is a truly meshless method using the moving least square (MLS) approximation as a trial function and the MLS weighted function as a test function in the weighted residual method. The incremental tangent stiffness method is applied in computation. Numerical examples show that the local Petrov-Galerkin method is applicable and effective for solving the elasto-plasticity problem.
引用
收藏
页码:1477 / +
页数:2
相关论文
共 6 条
[1]   A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics [J].
Atluri, SN ;
Zhu, T .
COMPUTATIONAL MECHANICS, 1998, 22 (02) :117-127
[2]   ELEMENT-FREE GALERKIN METHODS [J].
BELYTSCHKO, T ;
LU, YY ;
GU, L .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1994, 37 (02) :229-256
[3]  
[龙述尧 Long Shuyao], 2003, [工程力学, Engineering Mechanics], V20, P66
[4]  
Long Shuyao, 2001, Acta Mechanica Sinica, V33, P508
[5]  
XIONG Y, 2004, APPL MATH MECH, V28, P189
[6]  
Zhou W.H., 1998, CHIN J THEOR APPL ME, V30, P193