Preparation, characterization and bioactivities of nano anhydrous calcium phosphate added gelatin-chitosan scaffolds for bone tissue engineering

被引:24
|
作者
Singh, Yogendra Pratap [1 ]
Dasgupta, Sudip [1 ]
Bhaskar, Rakesh [2 ]
机构
[1] Natl Inst Technol, Dept Ceram Engn, Rourkela, India
[2] Natl Inst Technol, Dept Biotechnol & Med Engn, Rourkela, India
关键词
Anhydrous dihydrogen calcium phosphate; gelatin; chitosan; compressive strength; osteogenic properties; EXTRACELLULAR CALCIUM; DICALCIUM PHOSPHATE; COMPOSITE SCAFFOLDS; DIFFERENTIATION; HYDROXYAPATITE; OSTEOINDUCTION; FABRICATION; EXPRESSION; PHASE; DCPA;
D O I
10.1080/09205063.2019.1663474
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Gelatin, chitosan and nano calcium phosphate based composite scaffold with tailored architectures and properties has great potential for bone regeneration. Herein, we aimed to improve the physico chemical, mechanical and osteogenic properties of 3D porous scaffold by incorporation of dihydrogen calcium phosphate anhydrous (DCPA) nanoparticles into biopolymer matrix with variation in composition in the prepared scaffolds. Scaffolds were prepared from the slurry containing gelatin, chitosan and synthesized nano DCPA particle using lyophilization technique. DCPA nano particles were synthesized using calcium carbonate and phosphoric acid in water-ethanol medium. XRD pattern showed phase pure DCPA in synthesized nanopowder. Scaffolds were prepared by addition of DCPA nanoparticles to the extent of 5-10 wt% of total polymer into gelatin-chitosan solution with solid loading varying between 2.5 and 2.75 wt%. The prepared scaffold showed interconnected porosity with pore size varying between 110 and 200 micrometer. With addition of DCPA nanoparticles, average pore size of the prepared scaffolds decreased. With increase in nano ceramic phase content from 5 wt% to 10 wt% of total polymer, the compressive strength of the scaffold increased. Scaffold containing 10 wt% DCPA showed the highest average compressive strength of 2.2 MPa. Higher cellular activities were observed in DCPA containing scaffolds as compared to pure gelatin chitosan scaffold suggesting the fact that nano DCPA addition into the scaffold promoted better osteoblast adhesion and proliferation as evident from MTT assay and scanning electron microscopic (SEM) investigation of osteoblast cultured scaffolds. A higher degree of lamellopodia and filopodia extensions and better spreading behavior of osteoblasts were observed in FESEM micrographs of MG 63 cultured DCPA containing scaffold. The results demonstrated that both mechanical strength and osteogenic properties of gelatin-chitosan scaffold could be improved by addition of anhydrous dihydrogen calcium phosphate nanoparticles into it.
引用
收藏
页码:1756 / 1778
页数:23
相关论文
共 50 条
  • [31] Novel biodegradable chitosan-gelatin/nano-bioactive glass ceramic composite scaffolds for alveolar bone tissue engineering
    Peter, Mathew
    Binulal, N. S.
    Nair, S. V.
    Selvamurugan, N.
    Tamura, H.
    Jayakumar, R.
    CHEMICAL ENGINEERING JOURNAL, 2010, 158 (02) : 353 - 361
  • [32] Preparation and characterization of bionic bone structure chitosan/hydroxyapatite scaffold for bone tissue engineering
    Zhang, Jiazhen
    Nie, Jingyi
    Zhang, Qirong
    Li, Youliang
    Wang, Zhengke
    Hu, Qiaoling
    JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2014, 25 (01) : 61 - 74
  • [33] Fabrication of porous scaffold by ternary combination of chitosan, gelatin, and calcium phosphate for tissue engineering
    Shin, Ji-Young
    Jeong, Sun-Joo
    Lee, Woo-Kul
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2019, 80 : 862 - 869
  • [34] Kappa-carrageenan/chitosan/gelatin scaffolds enriched with potassium chloride for bone tissue engineering
    Loukelis, Konstantinos
    Papadogianni, Danai
    Chatzinikolaidou, Maria
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2022, 209 : 1720 - 1730
  • [35] 3D Printing of Bone-Mimetic Scaffold Composed of Gelatin/β-Tri-Calcium Phosphate for Bone Tissue Engineering
    Jeong, Jae Eun
    Park, Shin Young
    Shin, Ji Youn
    Seok, Ji Min
    Byun, June Ho
    Oh, Se Heang
    Kim, Wan Doo
    Lee, Jun Hee
    Park, Won Ho
    Park, Su A.
    MACROMOLECULAR BIOSCIENCE, 2020, 20 (12)
  • [36] Modeling and optimization of gelatin-chitosan micro-carriers preparation for soft tissue engineering: Using Response Surface Methodology
    Radaei, Payam
    Mashayekhan, Shohreh
    Vakilian, Saeid
    MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2017, 75 : 545 - 553
  • [37] Preparation and characterization of novel chitosan/zeolite scaffolds for bone tissue engineering applications
    Akmammedov, Rovshen
    Huysal, Merve
    Isik, Sevim
    Senel, Mehmet
    INTERNATIONAL JOURNAL OF POLYMERIC MATERIALS AND POLYMERIC BIOMATERIALS, 2018, 67 (02) : 110 - 118
  • [38] Biopolymer/Calcium Phosphate Scaffolds for Bone Tissue Engineering
    Li, Jianhua
    Baker, Bryan A.
    Mou, Xiaoning
    Ren, Na
    Qiu, Jichuan
    Boughton, Robert I.
    Liu, Hong
    ADVANCED HEALTHCARE MATERIALS, 2014, 3 (04) : 469 - 484
  • [39] Preparation and characterization of chitosan-carbon nanotube scaffolds for bone tissue engineering
    Venkatesan, Jayachandran
    Ryu, BoMi
    Sudha, P. N.
    Kim, Se-Kwon
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2012, 50 (02) : 393 - 402
  • [40] Fabrication and characterization of chitosan/gelatin/nanodiopside composite scaffolds for tissue engineering application
    Abbas Teimouri
    Shahin Roohafza
    Mohammad Azadi
    Alireza Najafi Chermahini
    Polymer Bulletin, 2018, 75 : 1487 - 1504