Preparation, characterization and bioactivities of nano anhydrous calcium phosphate added gelatin-chitosan scaffolds for bone tissue engineering

被引:24
|
作者
Singh, Yogendra Pratap [1 ]
Dasgupta, Sudip [1 ]
Bhaskar, Rakesh [2 ]
机构
[1] Natl Inst Technol, Dept Ceram Engn, Rourkela, India
[2] Natl Inst Technol, Dept Biotechnol & Med Engn, Rourkela, India
关键词
Anhydrous dihydrogen calcium phosphate; gelatin; chitosan; compressive strength; osteogenic properties; EXTRACELLULAR CALCIUM; DICALCIUM PHOSPHATE; COMPOSITE SCAFFOLDS; DIFFERENTIATION; HYDROXYAPATITE; OSTEOINDUCTION; FABRICATION; EXPRESSION; PHASE; DCPA;
D O I
10.1080/09205063.2019.1663474
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Gelatin, chitosan and nano calcium phosphate based composite scaffold with tailored architectures and properties has great potential for bone regeneration. Herein, we aimed to improve the physico chemical, mechanical and osteogenic properties of 3D porous scaffold by incorporation of dihydrogen calcium phosphate anhydrous (DCPA) nanoparticles into biopolymer matrix with variation in composition in the prepared scaffolds. Scaffolds were prepared from the slurry containing gelatin, chitosan and synthesized nano DCPA particle using lyophilization technique. DCPA nano particles were synthesized using calcium carbonate and phosphoric acid in water-ethanol medium. XRD pattern showed phase pure DCPA in synthesized nanopowder. Scaffolds were prepared by addition of DCPA nanoparticles to the extent of 5-10 wt% of total polymer into gelatin-chitosan solution with solid loading varying between 2.5 and 2.75 wt%. The prepared scaffold showed interconnected porosity with pore size varying between 110 and 200 micrometer. With addition of DCPA nanoparticles, average pore size of the prepared scaffolds decreased. With increase in nano ceramic phase content from 5 wt% to 10 wt% of total polymer, the compressive strength of the scaffold increased. Scaffold containing 10 wt% DCPA showed the highest average compressive strength of 2.2 MPa. Higher cellular activities were observed in DCPA containing scaffolds as compared to pure gelatin chitosan scaffold suggesting the fact that nano DCPA addition into the scaffold promoted better osteoblast adhesion and proliferation as evident from MTT assay and scanning electron microscopic (SEM) investigation of osteoblast cultured scaffolds. A higher degree of lamellopodia and filopodia extensions and better spreading behavior of osteoblasts were observed in FESEM micrographs of MG 63 cultured DCPA containing scaffold. The results demonstrated that both mechanical strength and osteogenic properties of gelatin-chitosan scaffold could be improved by addition of anhydrous dihydrogen calcium phosphate nanoparticles into it.
引用
收藏
页码:1756 / 1778
页数:23
相关论文
共 50 条
  • [21] Preparation and characterization of gelatin-bioactive glass ceramic scaffolds for bone tissue engineering
    Thomas, Ashley
    Bera, Japes
    JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2019, 30 (07) : 561 - 579
  • [22] Preparation of Porous Biphasic Calcium Phosphate-Gelatin Nanocomposite for Bone Tissue Engineering
    Bakhtiari, L.
    Rezai, H. R.
    Hosseinalipour, S. M.
    Shokrgozar, M. A.
    JOURNAL OF NANO RESEARCH, 2010, 11 : 67 - 72
  • [23] Preparation and comparative characterization of keratin-chitosan and keratin-gelatin composite scaffolds for tissue engineering applications
    Balaji, S.
    Kumar, Ramadhar
    Sripriya, R.
    Kakkar, Prachi
    Ramesh, D. Vijaya
    Reddy, P. Neela Kanta
    Sehgal, P. K.
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2012, 32 (04): : 975 - 982
  • [24] Glutaraldehyde: Introducing Optimum Condition for Cross-linking the Chitosan/Gelatin Scaffolds for Bone Tissue Engineering
    Zadeh, F. Banafati
    Zamanian, A.
    INTERNATIONAL JOURNAL OF ENGINEERING, 2022, 35 (10): : 1 - 15
  • [25] Macroporous Nanostructured Calcium Phosphate/Chitosan-Gelatin Composite Bone Tissue Engineering Scaffold
    Beman E.
    Borhan S.
    Hesaraki S.
    Nezafati N.
    Current Materials Science, 2023, 16 (04): : 443 - 452
  • [26] Preparation and biological properties of ZnO/hydroxyapatite/chitosan-polyethylene oxide@gelatin biomimetic composite scaffolds for bone tissue engineering
    Lu, Xingjian
    Liu, Leyun
    Feng, Shixuan
    Pan, Jiaqi
    Li, Chaorong
    Zheng, Yingying
    JOURNAL OF BIOMATERIALS APPLICATIONS, 2022, 37 (02) : 238 - 248
  • [27] Design and characterization of calcium phosphate ceramic scaffolds for bone tissue engineering
    Denry, Isabelle
    Kuhn, Liisa T.
    DENTAL MATERIALS, 2016, 32 (01) : 43 - 53
  • [28] Synthesis and characterization of Mg and Sr-modified calcium phosphate/gelatin biomimetic scaffolds for bone tissue engineering
    Moghanian, Amirhossein
    Raz, Majid
    Miri, Zahra
    Nasiripour, Saba
    Mehrjardi, Loghman Dehghan
    Dehabadi, Mohammad Mohaghegh
    Elsa, Morteza
    CERAMICS INTERNATIONAL, 2023, 49 (11) : 18255 - 18263
  • [29] Fabrication and Characterization of Gelatin/Calcium Phosphate Electrospun Composite Scaffold for Bone Tissue Engineering
    Miguez, Martin
    Sabarots, Manuel Garcia
    Cid, Mariana Paula
    Salvatierra, Nancy Alicia
    Comin, Romina
    FIBERS AND POLYMERS, 2022, 23 (07) : 1915 - 1923
  • [30] Biomimetic gelatin/chitosan/polyvinyl alcohol/nano-hydroxyapatite scaffolds for bone tissue engineering
    Ma, Pengfei
    Wu, Wenjing
    Wei, Yu
    Ren, Le
    Lin, Shuxian
    Wu, Junhua
    MATERIALS & DESIGN, 2021, 207