High-Resolution Spatiotemporal Modeling for Ambient PM2.5 Exposure Assessment in China from 2013 to 2019

被引:85
作者
Huang, Conghong [1 ]
Hu, Jianlin [2 ]
Xue, Tao [3 ,4 ]
Xu, Hao [5 ]
Wang, Meng [1 ,6 ,7 ]
机构
[1] Univ Buffalo, Sch Publ Hlth & Hlth Profess, Dept Epidemiol & Environm Hlth, Buffalo, NY 14214 USA
[2] Nanjing Univ Informat Sci & Technol, Jiangsu Key Lab Atmospher Environm Monitoring & P, Jiangsu Engn Technol Res Ctr Environm Cleaning Ma, Sch Environm Sci & Engn,Collaborat Innovat Ctr At, Nanjing 210044, Peoples R China
[3] Peking Univ, Sch Publ Hlth, Inst Reprod & Child Hlth, Minist Hlth,Key Lab Reprod Hlth, Beijing 100191, Peoples R China
[4] Peking Univ, Sch Publ Hlth, Dept Epidemiol & Biostat, Beijing 100191, Peoples R China
[5] Tsinghua Univ, Dept Earth Syst Sci, Minist Educ, Key Lab Earth Syst Modeling, Beijing 100084, Peoples R China
[6] Univ Buffalo, Res & Educ Energy Environm & Water Inst, Buffalo, NY 14214 USA
[7] Univ Washington, Dept Environm & Occupat Hlth Sci, Seattle, WA 98115 USA
关键词
LAND-USE REGRESSION; GROUND-LEVEL PM2.5; GEOGRAPHICALLY WEIGHTED REGRESSION; PARTICULATE MATTER PM2.5; SATELLITE-DERIVED PM2.5; LONG-TERM EXPOSURE; AIR-POLLUTION; MORTALITY; AEROSOL; ASSOCIATION;
D O I
10.1021/acs.est.0c05815
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Exposure to fine particulate matter (PM2.5) has become a major global health concern. Although modeling exposure to PM2.5 has been examined in China, accurate long-term assessment of PM2.5 exposure with high spatiotemporal resolution at the national scale is still challenging. We aimed to establish a hybrid spatiotemporal modeling framework for PM2.5 in China that incorporated extensive predictor variables (satellite, chemical transport model, geographic, and meteorological data) and advanced machine learning methods to support long-term and short-term health studies. The modeling framework included three stages: (1) filling satellite aerosol optical depth (AOD) missing values; (2) modeling 1 km x 1 km daily PM2.5 concentrations at a national scale using extensive covariates; and (3) downscaling daily PM2.5 predictions to 100-m resolution at a city scale. We achieved good model performances with spatial cross-validation (CV) R-2 of 0.92 and temporal CV R-2 of 0.85 at the air quality sites across the country. We then estimated daily PM2.5 concentrations in China from 2013 to 2019 at 1 km x 1 km grid cells. The downscaled predictions at 100 m resolution greatly improved the spatial variation of PM2.5 concentrations at the city scale. The framework and data set generated in this study could be useful to PM2.5 exposure assessment and epidemiological studies.
引用
收藏
页码:2152 / 2162
页数:11
相关论文
共 84 条
[1]   Impacts of snow and cloud covers on satellite-derived PM2.5 levels [J].
Bi, Jianzhao ;
Belle, Jessica H. ;
Wang, Yujie ;
Lyapustin, Alexei I. ;
Wildani, Avani ;
Liu, Yang .
REMOTE SENSING OF ENVIRONMENT, 2019, 221 :665-674
[2]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[3]   Occupational Exposure to PM2.5 and Incidence of Ischemic Heart Disease Longitudinal Targeted Minimum Loss-based Estimation [J].
Brown, Daniel M. ;
Petersen, Maya ;
Costello, Sadie ;
Noth, Elizabeth M. ;
Hammond, Katherine ;
Cullen, Mark ;
van der Laan, Mark ;
Eisen, Ellen .
EPIDEMIOLOGY, 2015, 26 (06) :806-814
[4]   Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter [J].
Burnett, Richard ;
Chen, Hong ;
Szyszkowicz, Mieczyslaw ;
Fann, Neal ;
Hubbell, Bryan ;
Pope, C. Arden ;
Apte, Joshua S. ;
Brauer, Michael ;
Cohen, Aaron ;
Weichenthal, Scott ;
Coggins, Jay ;
Di, Qian ;
Brunekreef, Bert ;
Frostad, Joseph ;
Lim, Stephen S. ;
Kan, Haidong ;
Walker, Katherine D. ;
Thurston, George D. ;
Hayes, Richard B. ;
Lim, Chris C. ;
Turner, Michelle C. ;
Jerrett, Michael ;
Krewski, Daniel ;
Gapstur, Susan M. ;
Diver, W. Ryan ;
Ostro, Bart ;
Goldberg, Debbie ;
Crouse, Daniel L. ;
Martin, Randall V. ;
Peters, Paul ;
Pinault, Lauren ;
Tjepkema, Michael ;
van Donkelaar, Aaron ;
Villeneuve, Paul J. ;
Miller, Anthony B. ;
Yin, Peng ;
Zhou, Maigeng ;
Wang, Lijun ;
Janssen, Nicole A. H. ;
Marra, Marten ;
Atkinson, Richard W. ;
Tsang, Hilda ;
Thuan Quoc Thach ;
Cannon, John B. ;
Allen, Ryan T. ;
Hart, Jaime E. ;
Laden, Francine ;
Cesaroni, Giulia ;
Forastiere, Francesco ;
Weinmayr, Gudrun .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (38) :9592-9597
[5]   Fine Particulate Matter Constituents and Cardiopulmonary Mortality in a Heavily Polluted Chinese City [J].
Cao, Junji ;
Xu, Hongmei ;
Xu, Qun ;
Chen, Bingheng ;
Kan, Haidong .
ENVIRONMENTAL HEALTH PERSPECTIVES, 2012, 120 (03) :373-378
[6]   Emission-driven changes in anthropogenic aerosol concentrations in China during 1970-2010 and its implications for PM2.5 control policy [J].
Chang, Wenyuan ;
Zhan, Jianqiong ;
Zhang, Ying ;
Li, Zhengqiang ;
Xing, Jia ;
Li, Jiandong .
ATMOSPHERIC RESEARCH, 2018, 212 :106-119
[7]   A machine learning method to estimate PM2.5 concentrations across China with remote sensing, meteorological and land use information [J].
Chen, Gongbo ;
Li, Shanshan ;
Knibbs, Luke D. ;
Hamm, N. A. S. ;
Cao, Wei ;
Li, Tiantian ;
Guo, Jianping ;
Ren, Hongyan ;
Abramson, Michael J. ;
Guo, Yuming .
SCIENCE OF THE TOTAL ENVIRONMENT, 2018, 636 :52-60
[8]   A comparison of linear regression, regularization, and machine learning algorithms to develop Europe-wide spatial models of fine particles and nitrogen dioxide [J].
Chen, Jie ;
de Hoogh, Kees ;
Gulliver, John ;
Hoffmann, Barbara ;
Hertel, Ole ;
Ketzel, Matthias ;
Bauwelinck, Mariska ;
van Donkelaar, Aaron ;
Hvidtfeldt, Ulla A. ;
Katsouyanni, Klea ;
Janssen, Nicole A. H. ;
Martin, Randall V. ;
Samoli, Evangelia ;
Schwartz, Per E. ;
Stafoggia, Massimo ;
Bellander, Tom ;
Strak, Maciek ;
Wolf, Kathrin ;
Vienneau, Danielle ;
Vermeulen, Roel ;
Brunekreef, Bert ;
Hoek, Gerard .
ENVIRONMENT INTERNATIONAL, 2019, 130
[9]   Extreme gradient boosting model to estimate PM2.5 concentrations with missing-filled satellite data in China [J].
Chen, Zhao-Yue ;
Zhang, Tian-Hao ;
Zhang, Rong ;
Zhu, Zhong-Min ;
Yang, Jun ;
Chen, Ping-Yan ;
Ou, Chun-Quan ;
Guo, Yuming .
ATMOSPHERIC ENVIRONMENT, 2019, 202 :180-189
[10]   China tackles the health effects of air pollution [J].
Chen, Zhu ;
Wang, Jin-Nan ;
Ma, Guo-Xia ;
Zhang, Yan-Shen .
LANCET, 2013, 382 (9909) :1959-1960