Evaluation of tritium production rate in a blanket mock-up using a compact fusion neutron source

被引:12
作者
Mukai, Keisuke [1 ]
Ogino, Yasuyuki [2 ]
Kobayashi, Makoto I. [3 ,4 ]
Mahmoud, Bakr [1 ,5 ]
Yagi, Juro [1 ]
Ogawa, Kunihiro [3 ,4 ]
Isobe, Mitsutaka [3 ,4 ]
Konishi, Satoshi [1 ]
机构
[1] Kyoto Univ, Inst Adv Energy, Uji, Kyoto 6110011, Japan
[2] Kyoto Univ, Grad Sch Energy Sci, Uji, Kyoto 6110011, Japan
[3] Natl Inst Nat Sci, Natl Inst Fus Sci, Toki, Gifu 5095292, Japan
[4] Grad Univ Adv Studies, SOKENDAI, Toki, Gifu 5095292, Japan
[5] Assiut Univ Assiut, Fac Sci, Phys Dept, Assiut 71516, Egypt
基金
日本学术振兴会;
关键词
blanket; compact neutron source; tritium breeding; neutronics experiment; single-crystal diamond; TRANSPORT; SURFACE; DEVICE; SYSTEM;
D O I
10.1088/1741-4326/abe4e7
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We report a neutronics study of a blanket mock-up using a discharge-type compact fusion neutron source. Deuterium-deuterium fusion neutrons were irradiated to the mock-ups composed of tritium breeder and neutron reflector/moderator. The tritium production rate (TPR) per source neutron was measured by a single-crystal diamond detector with a Li-6-enriched lithium fluoride film convertor after the calibration process. Despite the low neutron yield, energetic alpha and triton particles via Li-6(n, t)alpha neutron capture as well as C-12 via elastic scattering were successfully detected by the SDD with high signal to noise ratios. The TPRs were experimentally evaluated with errors of 8.4%-8.5% at the 1 sigma level at the positions with high thermal neutron fluxes where the errors were dominantly introduced by uncertainties in the monitoring of the neutron production rate. The calculated to experimental (C/E) values of TPR were evaluated to be 0.91-1.27 (FENDL-2.1) and 0.94-1.28 (FENDL-3.1). As the neutron source can generate 14 MeV neutrons using a mixed gas of deuterium and tritium, this approach provides more opportunities for blanket neutronics experiments.
引用
收藏
页数:8
相关论文
共 33 条
[1]  
[Anonymous], 2004, FENDL21
[2]  
[Anonymous], 2011, 3 RES COORD M IAEA V
[3]   Improvement of the Neutron Production Rate of IEC Fusion Device by the Fusion Reaction on the Inner Surface of the IEC Chamber [J].
Bakr, Mahmoud ;
Masuda, Kai ;
Yoshida, Masaya .
FUSION SCIENCE AND TECHNOLOGY, 2019, 75 (06) :479-486
[4]   Neutronics experiments for uncertainty assessment of tritium breeding in HCPB and HCLL blanket mock-ups irradiated with 14 MeV neutrons [J].
Batistoni, P. ;
Angelone, M. ;
Fischer, U. ;
Klix, A. ;
Kodeli, I. ;
Leichtle, D. ;
Pillon, M. ;
Pohorecki, W. ;
Villari, R. .
NUCLEAR FUSION, 2012, 52 (08)
[5]   New potentialities of the Liege intranuclear cascade model for reactions induced by nucleons and light charged particles [J].
Boudard, A. ;
Cugnon, J. ;
David, J. -C. ;
Leray, S. ;
Mancusi, D. .
PHYSICAL REVIEW C, 2013, 87 (01)
[6]   Single crystal diamond detector measurements of deuterium-deuterium and deuterium-tritium neutrons in Joint European Torus fusion plasmas [J].
Cazzaniga, C. ;
Sunden, E. Andersson ;
Binda, F. ;
Croci, G. ;
Ericsson, G. ;
Giacomelli, L. ;
Gorini, G. ;
Griesmayer, E. ;
Grosso, G. ;
Kaveney, G. ;
Nocente, M. ;
Cippo, E. Perelli ;
Rebai, M. ;
Syme, B. ;
Tardocchi, M. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2014, 85 (04)
[7]   Required, achievable and target TBR for the European DEMO [J].
Fischer, U. ;
Boccaccini, L., V ;
Cismondi, F. ;
Coleman, M. ;
Day, C. ;
Hoerstensmeyer, Y. ;
Moro, F. ;
Pereslavtsev, P. .
FUSION ENGINEERING AND DESIGN, 2020, 155
[8]   Neutron emission spectroscopy of DT plasmas at enhanced energy resolution with diamond detectors [J].
Giacomelli, L. ;
Nocente, M. ;
Rebai, M. ;
Rigamonti, D. ;
Milocco, A. ;
Tardocchi, M. ;
Chen, Z. J. ;
Du, T. F. ;
Fan, T. S. ;
Hu, Z. M. ;
Peng, X. Y. ;
Hjalmarsson, A. ;
Gorini, G. ;
Abhangi, M. ;
Abreu, P. ;
Aftanas, M. ;
Afzal, M. ;
Aggarwal, K. M. ;
Aho-Mantila, L. ;
Ahonen, E. ;
Aints, M. ;
Airila, M. ;
Albanese, R. ;
Alegre, D. ;
Alessi, E. ;
Aleynikov, P. ;
Alfier, A. ;
Alkseev, A. ;
Allan, P. ;
Almaviva, S. ;
Alonso, A. ;
Alper, B. ;
Alsworth, I. ;
Alves, D. ;
Ambrosino, G. ;
Ambrosino, R. ;
Amosov, V. ;
Andersson, F. ;
Andersson Sunden, E. ;
Angelone, M. ;
Anghel, A. ;
Anghel, M. ;
Angioni, C. ;
Appel, L. ;
Apruzzese, G. ;
Arena, P. ;
Ariola, M. ;
Arnichand, H. ;
Arnoux, G. ;
Arshad, S. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2016, 87 (11)
[9]   INITIAL MCNP6 RELEASE OVERVIEW [J].
Goorley, T. ;
James, M. ;
Booth, T. ;
Brown, F. ;
Bull, J. ;
Cox, L. J. ;
Durkee, J. ;
Elson, J. ;
Fensin, M. ;
Forster, R. A. ;
Hendricks, J. ;
Hughes, H. G. ;
Johns, R. ;
Kiedrowski, B. ;
Martz, R. ;
Mashnik, S. ;
McKinney, G. ;
Pelowitz, D. ;
Prael, R. ;
Sweezy, J. ;
Waters, L. ;
Wilcox, T. ;
Zukaitis, T. .
NUCLEAR TECHNOLOGY, 2012, 180 (03) :298-315
[10]  
Greenwood L.R., 2002, NDS435 IAEA INDC