Linear operators associated with k-uniformly convex functions

被引:139
作者
Kanas, S
Srivastava, HM
机构
[1] Tech Univ Tzeszow, Dept Math, PL-35959 Rzeszow, Poland
[2] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3P4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
k-uniformly convex functions; univalent functions; k-starlike functions; hypergeometric functions; Hadamard product (or convolution); integral operator; Carlson-Shaffer operator; Ruscheweyh derivative;
D O I
10.1080/10652460008819249
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In terms of the Hadamard product (or convolution), define the operator Ia,b,c by [I-a.b,I-c(f)](z) = f(z)* z(2)F(1)(a;b;c;z), where the function f is analytic in the unit disk. The classes of k-uniformly convex and k-starlike functions (0 less than or equal to k < infinity), denoted by k-UCV and k-ST, respectively, were introduced recently (cf. [3] and [5]). The object of the present paper is to find conditions on the parameters a, b, c, and k, for Which the linear operator I (a,b,c) maps the classes of starlike and univalent functions onto k.-UCV and k-ST.
引用
收藏
页码:121 / 132
页数:12
相关论文
共 9 条
[1]  
[Anonymous], 1978, IZV VYSSH UCHEBN ZAV
[2]   A PROOF OF THE BIEBERBACH CONJECTURE [J].
DEBRANGES, L .
ACTA MATHEMATICA, 1985, 154 (1-2) :137-152
[3]  
KANAS S, 1998, FOLIA SCI U TECH RES, V22, P65
[4]  
KANAS S, IN PRESS J COMPUT AP
[5]  
KANAS S, IN PRESS REV ROUMAIN
[6]   NEW CRITERIA FOR UNIVALENT FUNCTIONS [J].
RUSCHEWEYH, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 49 (01) :109-115
[7]  
Ruscheweyh S, 1982, CONVOLUTIONS GEOMETR
[8]  
Srivastava H. M., 1992, Current Topics in Analytic Function Theory
[9]   THE COMPUTATION OF F(3)2(1) [J].
WIMP, J .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1981, 10 (01) :55-62