Solving electromagnetic eigenvalue problems in polyhedral domains with nodal finite elements

被引:49
作者
Buffa, Annalisa [2 ]
Ciarlet, Patrick, Jr. [1 ]
Jamelot, Erell [1 ]
机构
[1] Ecole Natl Super Tech Avancees, CNRS, INRIA, Lab POEMS,UMR 7231, F-75739 Paris 15, France
[2] CNR, IMATI, I-27100 Pavia, Italy
关键词
MAXWELL EQUATIONS; WEIGHTED REGULARIZATION; NONSMOOTH DOMAINS;
D O I
10.1007/s00211-009-0246-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A few years ago, Costabel and Dauge proposed a variational setting, which allows one to solve numerically the time-harmonic Maxwell equations in 3D polyhedral geometries, with the help of a continuous approximation of the electromagnetic field. In order to remove spurious eigenmodes, their method required a parameterization of the variational formulation. In order to avoid this difficulty, we use a mixed variational setting instead of the parameterization, which allows us to handle the divergence-free constraint on the field in a straightforward manner. The numerical analysis of the method is carried out, and numerical examples are provided to show the efficiency of our approach.
引用
收藏
页码:497 / 518
页数:22
相关论文
共 32 条
[1]  
Amrouche C, 1998, MATH METHOD APPL SCI, V21, P823, DOI 10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO
[2]  
2-B
[3]  
Apel T, 1999, ADV NUMERICAL MATH
[4]   Time-dependent Maxwell's equations with charges in singular geometries [J].
Assous, F. ;
Ciarlet, P., Jr. ;
Garcia, E. ;
Segre, J. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 196 (1-3) :665-681
[5]   ON A FINITE-ELEMENT METHOD FOR SOLVING THE 3-DIMENSIONAL MAXWELL EQUATIONS [J].
ASSOUS, F ;
DEGOND, P ;
HEINTZE, E ;
RAVIART, PA ;
SEGRE, J .
JOURNAL OF COMPUTATIONAL PHYSICS, 1993, 109 (02) :222-237
[6]  
Assous F, 1998, RAIRO-MATH MODEL NUM, V32, P359
[7]   Numerical solution to the time-dependent Maxwell equations in two-dimensional singular domains:: The Singular Complement Method [J].
Assous, F ;
Ciarlet, P ;
Segré, J .
JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 161 (01) :218-249
[8]  
Babuka I., 1991, Handbook of Numerical Analysis, VII, P641
[9]   Three-dimensional finite element methods for the Stokes problem [J].
Boffi, D .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (02) :664-670
[10]  
Boffi D., 1997, Ann. Sc. Norm. Super. Pisa, Cl. Sci., V25, P131