Boundary blow-up solutions to the k-Hessian equation with singular weights

被引:3
作者
Zhang, Xinqiu [1 ]
Liu, Lishan [1 ]
机构
[1] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Boundary blow-up; k-Hessian equation; k-convex solution; MONGE-AMPERE EQUATIONS; DIRICHLET PROBLEM; ELLIPTIC-EQUATIONS; EXISTENCE; BEHAVIOR;
D O I
10.1016/j.aml.2020.106964
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we discuss the k-convex solution to the following boundary blow-up k-Hessian equation with singular weights: S-k (D(2)u) = H(x)u(p), in Omega, u = infinity, on partial derivative Omega, where k is an element of {1, 2, ... , n}, S-k (D(2)u) is the k-Hessian operator, Omega is a smooth, bounded and strictly convex domain in R-n (n >= 2), p > 0. (c) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 17 条