Implementation of Data-optimized FPGA-based Accelerator for Convolutional Neural Network

被引:0
|
作者
Cho, Mannhee [1 ]
Kim, Youngmin [1 ]
机构
[1] Hongik Univ, Sch Elect & Elect Engn, Seoul, South Korea
来源
2020 INTERNATIONAL CONFERENCE ON ELECTRONICS, INFORMATION, AND COMMUNICATION (ICEIC) | 2020年
基金
新加坡国家研究基金会;
关键词
Convolutional Neural Network; FPGA; High-level Synthesis; Accelerator;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Convolutional Neural Networks (CNNs) are widely used for image recognition, and FPGAs are considered suitable platform for CNNs due to their low power consumption and reconfigurability. While CNNs are mostly trained using floating point data type for high inference accuracy, fixed point data type can be used to reduce data size and take advantage of computation efficiency on FPGAs without any accuracy loss. In this paper, we propose an accelerator design for LeNet-5 CNN architecture [1] for MNIST handwritten digit recognition. The accelerator is synthesized with Xilinx Vivado High-Level Synthesis (HLS) tool (v2017.2), targeting xczu9eg-ffvb1156-2-i FPGA board. The proposed accelerator focuses on reducing latency and memory usage, and the performance is compared with a conventional floating point design. Our proposed accelerator can achieve latency reduction up to 90% and memory usage reduction up to 40% without any accuracy loss, compared to the conventional design.
引用
收藏
页数:2
相关论文
共 50 条
  • [1] FPGA-Based Convolutional Neural Network Accelerator with Resource-Optimized Approximate Multiply-Accumulate Unit
    Cho, Mannhee
    Kim, Youngmin
    ELECTRONICS, 2021, 10 (22)
  • [2] An FPGA-based Accelerator Implementation for Deep Convolutional Neural Networks
    Zhou, Yongmei
    Jiang, Jingfei
    PROCEEDINGS OF 2015 4TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT 2015), 2015, : 829 - 832
  • [3] FPGA-based Convolutional Neural Network Accelerator design using High Level Synthesize
    Ghaffari, Sina
    Sharifian, Saeed
    2016 2ND INTERNATIONAL CONFERENCE OF SIGNAL PROCESSING AND INTELLIGENT SYSTEMS (ICSPIS), 2016, : 29 - 34
  • [4] An FPGA-based Accelerator Platform Implements for Convolutional Neural Network
    Meng, Xiao
    Yu, Lixin
    Qin, Zhiyong
    2019 THE 3RD INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPILATION, COMPUTING AND COMMUNICATIONS (HP3C 2019), 2019, : 25 - 28
  • [5] FPGA-based Convolutional Neural Network Design and Implementation
    Yan, Ruitao
    Yi, Jianjun
    He, Jie
    Zhao, Yifan
    2023 3RD ASIA-PACIFIC CONFERENCE ON COMMUNICATIONS TECHNOLOGY AND COMPUTER SCIENCE, ACCTCS, 2023, : 456 - 460
  • [6] An Energy-Efficient FPGA-based Convolutional Neural Network Implementation
    Irmak, Hasan
    Alachiotis, Nikolaos
    Ziener, Daniel
    29TH IEEE CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS (SIU 2021), 2021,
  • [7] Scalable FPGA-Based Convolutional Neural Network Accelerator for Embedded Systems
    Zhao, Jingyuan
    Yin, Zhendong
    Zhao, Yanlong
    Wu, Mingyang
    Xu, Mingdong
    2019 4TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND APPLICATIONS (ICCIA 2019), 2019, : 36 - 40
  • [8] FPGA-based Accelerator for Convolutional Neural Network Application in Mobile Robotics
    Mazzetto, Lucas F. R.
    Castanho, Jose E. C.
    2023 LATIN AMERICAN ROBOTICS SYMPOSIUM, LARS, 2023 BRAZILIAN SYMPOSIUM ON ROBOTICS, SBR, AND 2023 WORKSHOP ON ROBOTICS IN EDUCATION, WRE, 2023, : 433 - 438
  • [9] An FPGA-Based Computation-Efficient Convolutional Neural Network Accelerator
    Archana, V. S.
    2022 IEEE INTERNATIONAL POWER AND RENEWABLE ENERGY CONFERENCE, IPRECON, 2022,
  • [10] VHDL Generator for A High Performance Convolutional Neural Network FPGA-Based Accelerator
    Hamdan, Muhammad K.
    Rover, Diane T.
    2017 INTERNATIONAL CONFERENCE ON RECONFIGURABLE COMPUTING AND FPGAS (RECONFIG), 2017,