Bandgap engineering of MoS2/MX2 (MX2 = WS2, MoSe2 and WSe2) heterobilayers subjected to biaxial strain and normal compressive strain

被引:41
|
作者
Su, Xiangying [1 ]
Ju, Weiwei [1 ]
Zhang, Ruizhi [2 ]
Guo, Chongfeng [2 ]
Zheng, Jiming [2 ]
Yong, Yongliang [1 ]
Li, Xiaohong [1 ]
机构
[1] Henan Univ Sci & Technol, Sch Phys & Engn, 263 Kaiyuan Rd, Luoyang 471023, Peoples R China
[2] NW Univ Xian, Nat Key Lab Photoelect Technol & Funct Mat Cultur, Natl Photoelect Technol & Funct Mat & Applicat Sc, Inst Photon & Photon Technol,Dept Phys, Xian 710069, Peoples R China
基金
中国国家自然科学基金;
关键词
TRANSITION-METAL DICHALCOGENIDES; TOTAL-ENERGY CALCULATIONS; ELECTRONIC-PROPERTIES; HETEROSTRUCTURES; EXFOLIATION; GRAPHENE; GROWTH; GAP; SE;
D O I
10.1039/c5ra27871f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Using first-principles calculations, we studied the electronic properties of quasi-2D MoS2/MX2 (MX2 = WS2, MoSe2 and WSe2) heterobilayers, focusing on engineering the band gap via application of in-plane biaxial strain and out-of-plane normal compressive strain (NCS). All heterobilayers show semiconducting characteristics with an indirect band gap except for the MoS2/WSe2 system which exhibits direct band gap character. The band gaps can all be widely tuned through strain and semiconductor-metal transitions can occur. In particular the direct band gap can be tuned and an appropriate compressive strain can tune the direct band gap of MoS2/WSe2 and MoS2/MoSe2, but MoS2/WS2 does not exhibit a direct band gap under any circumstances.
引用
收藏
页码:18319 / 18325
页数:7
相关论文
共 50 条
  • [21] Self-organized quantum dots in marginally twisted MoSe2/WSe2 and MoS2/WS2 bilayers
    Enaldiev, V. V.
    Ferreira, F.
    McHugh, J. G.
    Fal'ko, Vladimir, I
    NPJ 2D MATERIALS AND APPLICATIONS, 2022, 6 (01)
  • [22] Second harmonic generation in strained transition metal dichalcogenide monolayers: MoS2, MoSe2, WS2, and WSe2
    Mennel, Lukas
    Paur, Matthias
    Mueller, Thomas
    APL PHOTONICS, 2019, 4 (03)
  • [23] Self-organized quantum dots in marginally twisted MoSe2/WSe2 and MoS2/WS2 bilayers
    V. V. Enaldiev
    F. Ferreira
    J. G. McHugh
    Vladimir I. Fal’ko
    npj 2D Materials and Applications, 6
  • [24] Exfoliated transition metal dichalcogenides (MoS2, MoSe2, WS2, WSe2): An electrochemical impedance spectroscopic investigation
    Loo, Adeline Huiling
    Bonanni, Alessandra
    Sofer, Zdenek
    Pumera, Martin
    ELECTROCHEMISTRY COMMUNICATIONS, 2015, 50 : 39 - 42
  • [25] Stability of direct band gap under mechanical strains for monolayer MoS2, MoSe2, WS2 and WSe2
    Deng, Shuo
    Li, Lijie
    Li, Min
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2018, 101 : 44 - 49
  • [26] Strain tunable interlayer and intralayer excitons in vertically stacked MoSe2/WSe2 heterobilayers
    Li, L. L.
    Gillen, R.
    Palummo, M.
    Milosevic, M. V.
    Peeters, F. M.
    APPLIED PHYSICS LETTERS, 2023, 123 (03)
  • [27] Electronic Properties of MoS2/MX2/MoS2 Trilayer Heterostructures: A First Principle Study
    Datta, Kanak
    Khosru, Quazi D. M.
    ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2016, 5 (11) : Q3001 - Q3007
  • [28] Multifunctional WSe2/MoSe2/WSe2/MoSe2 heterostructures
    Abderrahmane, Abdelkader
    Woo, Changlim
    Jung, Pan-Gum
    Ko, Pil Ju
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2024, 169
  • [29] Pressure coefficients for direct optical transitions in MoS2, MoSe2, WS2, and WSe2 crystals and semiconductor to metal transitions
    Dybala, F.
    Polak, M. P.
    Kopaczek, J.
    Scharoch, P.
    Wu, K.
    Tongay, S.
    Kudrawiec, R.
    SCIENTIFIC REPORTS, 2016, 6
  • [30] Pressure coefficients for direct optical transitions in MoS2, MoSe2, WS2, and WSe2 crystals and semiconductor to metal transitions
    F. Dybała
    M. P. Polak
    J. Kopaczek
    P. Scharoch
    K. Wu
    S. Tongay
    R. Kudrawiec
    Scientific Reports, 6