Modeling picosecond-laser-driven neonlike titanium x-ray laser experiments

被引:30
作者
Nilsen, J [1 ]
Li, YL [1 ]
Dunn, J [1 ]
机构
[1] Univ Calif Lawrence Livermore Natl Lab, Inst Laser Sci & Applicat, Livermore, CA 94550 USA
关键词
D O I
10.1364/JOSAB.17.001084
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The technique of first using a nanosecond pulse to preform and ionize the plasma and then using a picosecond pulse to heat the plasma enables low-Z neonlike and nickellike ions to lase, driven by small lasers, with only 10 J of energy. Recent experiments at the Compact Multipulse Terawatt laser facility at Lawrence Livermore National Laboratory have demonstrated lasing in neonlike titanium by irradiation of 1-cm-long slab targets of titanium with a 4.8-5, 800-ps prepulse that is followed 1.6 ns later by a 6-J, 1-ps drive pulse. In this study we model the neonlike titanium x-ray laser under those experimental conditions. The LASNEX code is used to calculate the hydrodynamic evolution of the plasma and to provide the temperatures and densities to the XRASER code, which then performs the kinetics calculations to determine the gain. The temporal and spatial evolution of the plasma is studied both with and without radiation transport included for the 3d and the 3s --> 2p neonlike titanium resonance lines. Large regions with gains greater than 80 cm(-1) are predicted for the 3p S-1(0) --> 3s (1)p(1) neonlike titanium laser line at 32.6 nm.; The gain is shown to be quasi-steady-state over these time scales with regard to the equilibration of the excited-state populations. The transient nature of the gain is shown to be due to the ionization balance in the plasma. Given the large gain and the large gradients in these plasmas, we calculate x-ray laser propagation, including refraction effects, to understand which regions have the right combination of high gain and low density gradients for an optical contribution to the x-ray laser output. Calculations with different delays between the long and the short pulses and with different durations for the short pulse are presented to provide a better insight into optimization of the laser output. High gain is also predicted and observed for the self-photopumped 3d P-1(1) --> 3p P-1(1) laser line at 30.1 nm in neonlike titanium, and calculations are presented to help understand this lasing mechanism. (C) 2000 Optical Society of America.
引用
收藏
页码:1084 / 1092
页数:9
相关论文
共 22 条
[1]  
Afanas'ev Yu. V., 1989, Soviet Journal of Quantum Electronics, V19, P1606, DOI 10.1070/QE1989v019n12ABEH009835
[2]   EFFICIENT SOFT-X-RAY LASING AT 6 TO 8 NM WITH NICKEL-LIKE LANTHANIDE IONS [J].
DAIDO, H ;
KATO, Y ;
MURAI, K ;
NINOMIYA, S ;
KODAMA, R ;
YUAN, G ;
OSHIKANE, Y ;
TAKAGI, M ;
TAKABE, H ;
KOIKE, F .
PHYSICAL REVIEW LETTERS, 1995, 75 (06) :1074-1077
[3]   Demonstration of transient gain x-ray lasers near 20 nm for nickellike yttrium, zirconium, niobium, and molybdenum [J].
Dunn, J ;
Nilsen, J ;
Osterheld, AL ;
Li, YL ;
Shlyaptsev, VN .
OPTICS LETTERS, 1999, 24 (02) :101-103
[4]   Demonstration of x-ray amplification in transient gain nickel-like palladium scheme [J].
Dunn, J ;
Osterheld, AL ;
Shepherd, R ;
White, WE ;
Shlyaptsev, VN ;
Stewart, RE .
PHYSICAL REVIEW LETTERS, 1998, 80 (13) :2825-2828
[5]   SENSITIVITY OF LASING IN NEON-LIKE ZINC AT 21.2 NM TO THE USE OF THE PREPULSE TECHNIQUE [J].
FILL, EE ;
LI, YL ;
SCHLOGL, D ;
STEINGRUBER, J ;
NILSEN, J .
OPTICS LETTERS, 1995, 20 (04) :374-376
[6]   Saturated operation of a transient collisional x-ray laser [J].
Kalachnikov, MP ;
Nickles, PV ;
Schnurer, M ;
Sandner, W ;
Shlyaptsev, VN ;
Danson, C ;
Neely, D ;
Wolfrum, E ;
Zhang, J ;
Behjat, A ;
Demir, A ;
Tallents, GJ ;
Warwick, PJ ;
Lewis, CLS .
PHYSICAL REVIEW A, 1998, 57 (06) :4778-4783
[7]  
LI YL, 1998, PHYS REV A, V58, P2668
[8]   TRAVELING-WAVE EXCITATION AND AMPLIFICATION OF NEON-LIKE GERMANIUM 3P-3S TRANSITIONS [J].
MORENO, JC ;
NILSEN, J ;
DASILVA, LB .
OPTICS COMMUNICATIONS, 1994, 110 (5-6) :585-589
[9]   Short pulse x-ray laser 32.6 nm based on transient gain in Ne-like titanium [J].
Nickles, PV ;
Shlyaptsev, VN ;
Kalachnikov, M ;
Schnurer, M ;
Will, I ;
Sandner, W .
PHYSICAL REVIEW LETTERS, 1997, 78 (14) :2748-2751
[10]   Lasing on the self-photopumped nickel-like 4f1P1→4d1P1 x-ray transition [J].
Nilsen, J ;
Dunn, J ;
Osterheld, AL ;
Li, Y .
PHYSICAL REVIEW A, 1999, 60 (04) :R2677-R2680