Extracellular Vesicle-Encapsulated miR-29b-3p Released From Bone Marrow-Derived Mesenchymal Stem Cells Underpins Osteogenic Differentiation

被引:21
|
作者
Zhang, Xueliang [1 ]
Wang, Wenji [1 ]
Wang, Yongping [1 ]
Zhao, Haiyan [1 ]
Han, Xingwen [1 ]
Zhao, Tong [1 ]
Qu, Peng [1 ]
机构
[1] Lanzhou Univ, Dept Orthopaed, Hosp 1, Lanzhou, Peoples R China
关键词
microRNA-29b-3p; KDM5A; SOCS1; NF-κ B; extracellular vesicles; osteogenic differentiation;
D O I
10.3389/fcell.2020.581545
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Objective Mesenchymal stem cells (MSCs) confer therapeutic benefits in various pathologies and cancers by releasing extracellular vesicles (EVs) loaded with bioactive compounds. Herein, we identified bone marrow MSC (BMSC)-derived EVs harboring microRNA (miR)-29b-3p to regulate osteogenic differentiation through effects on the suppressor of cytokine signaling 1 (SOCS1)/nuclear factor (NF)-kappa B pathway via targeting of lysine demethylase 5A (KDM5A) in osteoporosis. Methods We quantified the miR-29b-3p in BMSC-derived EVs from bone marrow specimens of osteoporotic patients and non-osteoporotic patients during total hip arthroplasty (THA). miR-29b-3p targeting KDM5A was confirmed by promoter luciferase assay, and enrichment of KDM5A in the promoter region of SOCS1 was analyzed by chromatin immunoprecipitation (ChIP). The expression and translocation of NF-kappa B to the nucleus were detected by western blot analysis and immunofluorescence staining, respectively. An ovariectomized (OVX) osteoporosis mouse model was established to further confirm the in vitro findings. Results BMSC-derived EVs of osteoporotic patients exhibited downregulated miR-29b-3p. EV-encapsulated miR-29b-3p from BMSCs potentiated osteogenic differentiation by specifically inhibiting KDM5A. KDM5A inhibited osteogenic differentiation by the regulation of H3K4me3 and H3K27ac of SOCS1. SOCS1 potentiated osteogenic differentiation by inhibiting NF-kappa B pathway. Conclusion EV-encapsulated miR-29b-3p derived from BMSCs potentiated osteogenic differentiation through blockade of the SOCS1/NF-kappa B pathway by inhibition of KDM5A.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Extracellular vesicle-encapsulated miR-22-3p from bone marrow mesenchymal stem cell promotes osteogenic differentiation via FTO inhibition
    Xueliang Zhang
    Yongping Wang
    Haiyan Zhao
    Xingwen Han
    Tong Zhao
    Peng Qu
    Guangjie Li
    Wenji Wang
    Stem Cell Research & Therapy, 11
  • [2] Extracellular vesicle-encapsulated miR-22-3p from bone marrow mesenchymal stem cell promotes osteogenic differentiation via FTO inhibition
    Zhang, Xueliang
    Wang, Yongping
    Zhao, Haiyan
    Han, Xingwen
    Zhao, Tong
    Qu, Peng
    Li, Guangjie
    Wang, Wenji
    STEM CELL RESEARCH & THERAPY, 2020, 11 (01)
  • [3] LncRNA NEAT1/miR-29b-3p/BMP1 axis promotes osteogenic differentiation in human bone marrow-derived mesenchymal stem cells
    Zhang, Yingzi
    Chen, Bin
    Li, Dazhuang
    Zhou, Xiaozhong
    Chen, Zhiwei
    PATHOLOGY RESEARCH AND PRACTICE, 2019, 215 (03) : 525 - 531
  • [4] miR-10a-5p inhibits osteogenic differentiation of bone marrow-derived mesenchymal stem cells
    Zhang, Yingjie
    Zhou, Lishu
    Zhang, Zhaoqiang
    Ren, Fei
    Chen, Liangjiao
    Lan, Zedong
    MOLECULAR MEDICINE REPORTS, 2020, 22 (01) : 135 - 144
  • [5] Rapamycin as an inhibitor of osteogenic differentiation in bone marrow-derived mesenchymal stem cells
    Isomoto, Shinji
    Hattori, Koji
    Ohgushi, Hajime
    Nakajima, Hiroshi
    Tanaka, Yasuhito
    Takakura, Yoshinori
    JOURNAL OF ORTHOPAEDIC SCIENCE, 2007, 12 (01) : 83 - 88
  • [6] Osteogenic differentiation of human marrow-derived mesenchymal stem cells
    Marie, Pierre J.
    Fromigue, Olivia
    REGENERATIVE MEDICINE, 2006, 1 (04) : 539 - 548
  • [7] Extracellular Purines Promote the Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells to the Osteogenic and Adipogenic Lineages
    Ciciarello, Marilena
    Zini, Roberta
    Rossi, Lara
    Salvestrini, Valentina
    Ferrari, Davide
    Manfredini, Rossella
    Lemoli, Roberto M.
    STEM CELLS AND DEVELOPMENT, 2013, 22 (07) : 1097 - 1111
  • [8] Osteogenic differentiation of bone marrow-derived mesenchymal stem cells on anodized niobium surface
    Leonardo Marasca Antonini
    Tiago Lemos Menezes
    Adilar Gonçalves dos Santos
    Antonio Shigueaki Takimi
    Denis Jardim Villarinho
    Bruno Paiva dos Santos
    Melissa Camassola
    Jossano Saldanha Marcuzzo
    Célia de Fraga Malfatti
    Journal of Materials Science: Materials in Medicine, 2019, 30
  • [9] Osteogenic differentiation of bone marrow-derived mesenchymal stem cells on anodized niobium surface
    Antonini, Leonardo Marasca
    Menezes, Tiago Lemos
    dos Santos, Adilar Goncalves, Jr.
    Takimi, Antonio Shigueaki
    Villarinho, Denis Jardim
    dos Santos, Bruno Paiva
    Camassola, Melissa
    Marcuzzo, Jossano Saldanha
    Malfatti, Celia de Fraga
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2019, 30 (09)
  • [10] Influence of glucocorticoids on the osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells
    Da-An Zhou
    Hong-Xin Zheng
    Cheng-Wen Wang
    Dan Shi
    Jian-Jun Li
    BMC Musculoskeletal Disorders, 15