Effect of cellulose nanocrystals derived from Dunaliella tertiolecta marine green algae residue on crystallization behaviour of poly(lactic acid)

被引:45
作者
Mondal, Kona [1 ]
Sakurai, Shinichi [1 ,2 ]
Okahisa, Yoko [2 ]
Goud, Vaibhav V. [1 ]
Katiyar, Vimal [1 ]
机构
[1] Indian Inst Technol Guwahati IITG, Dept Chem Engn, Gauhati 781039, Assam, India
[2] Kyoto Inst Technol KIT, Dept Biobased Mat Sci, Kyoto 6068585, Japan
关键词
Algae biomass residue; Poly(lactic acid); Cellulose nanocrystals; Bio-composites; Crystallization;
D O I
10.1016/j.carbpol.2021.117881
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Marine green algae biomass residue (ABR), a waste by-product of Dunaliella tertiolecta, left behind after the extraction of oil from the algal biomass, was utilized for the fabrication of cellulose nanocrystals (CNCs). The fabricated sulphuric acid hydrolysed CNCs had needle-like morphology, with dominant cellulose type I polymorph and a high crystallinity index of 89 %. ICP-MS elemental analysis confirmed the presence of a variety of minerals in the ABR. Washed ABR (WABR)/PLA and CNC/PLA bio-composite films were developed via solvent casting technique with varying bio-filler loadings for comparing their effectiveness on the crystallization behaviour of PLA. FESEM, FTIR, XRD and TGA were used to characterize the bio-fillers. The nucleating and crystallization behaviour of the bio-composite films were confirmed using DSC, SAXS and POM analysis which indicated better effectiveness of CNCs with a significant reduction in cold crystallization temperature, and noteworthy increment in crystallinity and spherulite growth rate.
引用
收藏
页数:9
相关论文
共 33 条
[1]   Enhanced dispersion of cellulose nanocrystals in melt-processed polylactide-based nanocomposites [J].
Arias, Andrea ;
Heuzey, Marie-Claude ;
Huneault, Michel A. ;
Ausias, Gilles ;
Bendahou, Abdelkader .
CELLULOSE, 2015, 22 (01) :483-498
[2]   Crystallization kinetics of poly(lactic acid)-talc composites [J].
Battegazzore, D. ;
Bocchini, S. ;
Frache, A. .
EXPRESS POLYMER LETTERS, 2011, 5 (10) :849-858
[3]   Valorisation of macroalgae industrial by-product as filler in thermoplastic polymer composites [J].
Bulota, Mindaugas ;
Budtova, Tatiana .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2016, 90 :271-277
[4]   PLA/algae composites: Morphology and mechanical properties [J].
Bulota, Mindaugas ;
Budtova, Tatiana .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2015, 73 :109-115
[5]   METHODS FOR THE ROUTINE ESTIMATION OF MANNITOL, ALGINIC ACID, AND COMBINED FUCOSE IN SEAWEEDS [J].
CAMERON, MC ;
ROSS, AG ;
PERCIVAL, EGV .
JOURNAL OF THE SOCIETY OF CHEMICAL INDUSTRY-LONDON, 1948, 67 (04) :161-164
[6]   Metabolites from algae with economical impact [J].
Cardozo, Karina H. M. ;
Guaratini, Thais ;
Barros, Marcelo P. ;
Falcao, Vanessa R. ;
Tonon, Angela P. ;
Lopes, Norberto P. ;
Campos, Sara ;
Torres, Moacir A. ;
Souza, Anderson O. ;
Colepicolo, Pio ;
Pinto, Ernani .
COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY C-TOXICOLOGY & PHARMACOLOGY, 2007, 146 (1-2) :60-78
[7]   Biodiesel production from algae oil high in free fatty acids by two-step catalytic conversion [J].
Chen, Lin ;
Liu, Tianzhong ;
Zhang, Wei ;
Chen, Xiaolin ;
Wang, Junfeng .
BIORESOURCE TECHNOLOGY, 2012, 111 :208-214
[8]   Production of new cellulose nanomaterial from red algae marine biomass Gelidium elegans [J].
Chen, You Wei ;
Lee, Hwei Voon ;
Juan, Joon Ching ;
Phang, Siew-Moi .
CARBOHYDRATE POLYMERS, 2016, 151 :1210-1219
[9]   Biodegradable thermoplastic composites based on polyvinyl alcohol and algae [J].
Chiellini, Emo ;
Cinelli, Patrizia ;
Hieva, Vassilka I. ;
Martera, Martina .
BIOMACROMOLECULES, 2008, 9 (03) :1007-1013
[10]  
Cser F, 2001, J APPL POLYM SCI, V80, P2300, DOI 10.1002/app.1335