AN ALTERNATIVE PROOF OF WELL-POSEDNESS OF STOCHASTIC EVOLUTION EQUATIONS IN THE VARIATIONAL SETTING

被引:0
|
作者
Marinelli, Carlo [1 ]
Scarpa, Luca [2 ]
Stefanelli, Ulisse [2 ,3 ,4 ]
机构
[1] UCL, Dept Math, Gower St, London WC1E 6BT, England
[2] Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[3] Univ Vienna, Vienna Res Platform Accelerating Photoreact Disco, Wahringer Str 17, A-1090 Vienna, Austria
[4] CNR, Ist Matemat Applicata & Tecnol Informat E Magenes, Via Ferrata 1, I-27100 Pavia, Italy
基金
奥地利科学基金会;
关键词
stochastic evolution equations; variational approach; monotone operators;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a new proof of well-posedness of stochastic evolution equations in variational form, relying solely on a (nonlinear) infinite-dimensional approximation procedure rather than on classical finite-dimensional projection arguments of Galerkin type.
引用
收藏
页码:209 / 221
页数:13
相关论文
共 50 条
  • [41] Well-posedness of time-space fractional stochastic evolution equations driven by α-stable noise
    Xu, Pengfei
    Huang, Jianhua
    Zou, Guangan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (11) : 3818 - 3830
  • [42] The critical variational setting for stochastic evolution equations
    Antonio Agresti
    Mark Veraar
    Probability Theory and Related Fields, 2024, 188 : 957 - 1015
  • [43] Random Evolution Equations: Well-Posedness, Asymptotics, and Applications to Graphs
    Stefano Bonaccorsi
    Francesca Cottini
    Delio Mugnolo
    Applied Mathematics & Optimization, 2021, 84 : 2849 - 2887
  • [44] Random Evolution Equations: Well-Posedness, Asymptotics, and Applications to Graphs
    Bonaccorsi, Stefano
    Cottini, Francesca
    Mugnolo, Delio
    APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 84 (03): : 2849 - 2887
  • [45] The critical variational setting for stochastic evolution equations
    Agresti, Antonio
    Veraar, Mark
    PROBABILITY THEORY AND RELATED FIELDS, 2024, 188 (3-4) : 957 - 1015
  • [46] Well-posedness of the Cauchy problem for p-evolution equations
    Ascanelli, Alessia
    Boiti, Chiara
    Zanghirati, Luisa
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 253 (10) : 2765 - 2795
  • [47] On the well-posedness for stochastic fourth-order Schrdinger equations
    FANG Dao-yuan ZHANG Lin-zi ZHANG Ting Department of Mathematics
    Applied Mathematics:A Journal of Chinese Universities, 2011, (03) : 307 - 318
  • [48] WELL-POSEDNESS OF STOCHASTIC PRIMITIVE EQUATIONS WITH MULTIPLICATIVE NOISE IN THREE DIMENSIONS
    Gao, Hongjun
    Sun, Chengfeng
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2016, 21 (09): : 3053 - 3073
  • [49] STUDY ON THE WELL-POSEDNESS OF STOCHASTIC BOUSSINESQ EQUATIONS WITH NAVIER BOUNDARY CONDITIONS
    Sun, Chengfeng
    Jiang, Shan
    Liu, Hui
    MATHEMATICAL FOUNDATIONS OF COMPUTING, 2025, 8 (01): : 1 - 15
  • [50] Well-posedness and regularity of Caputo–Hadamard fractional stochastic differential equations
    Zhiwei Yang
    Xiangcheng Zheng
    Hong Wang
    Zeitschrift für angewandte Mathematik und Physik, 2021, 72