hp-adaptive discontinuous Galerkin methods for non-stationary convection-diffusion problems

被引:7
作者
Cangiani, A. [1 ,6 ]
Georgoulis, E. H. [1 ,2 ,3 ]
Giani, S. [5 ]
Metcalfe, S. [4 ]
机构
[1] Univ Leicester, Dept Math, Univ Rd, Leicester LE1 7RH, Leics, England
[2] Natl Tech Univ Athens, Sch Appl Math & Phys Sci, Dept Math, Zografos 15780, Greece
[3] Fdn Res & Technol Hellas, Inst Appl & Computat Math, Iraklion 70013, Greece
[4] Univ York, Dept Chem, York YO10 5DD, N Yorkshire, England
[5] Durham Univ Lower Mountjoy, Dept Engn, South Rd, Durham DH1 3LE, England
[6] Sch Math Sci, Univ Pk, Nottingham NG7 2RD, England
基金
英国工程与自然科学研究理事会;
关键词
Discontinuous Galerkin; Unsteady convection-diffusion; A posteriori error estimation; Adaptive finite element methods; Anisotropic meshes; POSTERIORI ERROR ESTIMATION; ELLIPTIC RECONSTRUCTION; MESH MODIFICATION; APPROXIMATIONS; ESTIMATOR;
D O I
10.1016/j.camwa.2019.04.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An a posteriori error estimator for the error in the (L-2(H-1) + L-infinity(L-2))-type norm for an interior penalty discontinuous Galerkin (dG) spatial discretisation and backward Euler temporal discretisation of linear non-stationary convection-diffusion initial/boundary value problems is derived, allowing for anisotropic elements. The proposed error estimator is used to drive an hp-space-time adaptive algorithm wherein directional mesh refinement is employed to give rise to highly anisotropic elements able to accurately capture layers. The performance of the hp-space-time adaptive algorithm is assessed via a number of standard test problems characterised by sharp and/or moving layers. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3090 / 3104
页数:15
相关论文
共 39 条