Two-grid methods for nonlinear time fractional diffusion equations by L 1-Galerkin FEM

被引:36
作者
Li, Qingfeng [2 ]
Chen, Yanping [1 ]
Huang, Yunqing [2 ]
Wang, Yang [2 ]
机构
[1] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R China
[2] Xiangtan Univ, Hunan Key Lab Computat & Simulat Sci & Engn, Sch Math & Computat Sci, Xiangtan 411105, Peoples R China
基金
中国国家自然科学基金;
关键词
Two-grid method; Finite element method; L; 1; scheme; Nonlinear time fractional diffusion equations; MIXED FINITE-ELEMENT; CONVOLUTION QUADRATURE; DIFFERENCE SCHEME; DISCRETIZATION;
D O I
10.1016/j.matcom.2020.12.033
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, two efficient two-grid algorithms with L 1 scheme are presented for solving two-dimensional nonlinear time fractional diffusion equations. The classical L 1 scheme is considered in the time direction, and the two-grid FE method is used to approximate spatial direction. To linearize the discrete equations, the Newton iteration approach and correction technique are applied. The two-grid algorithms reduce the solution of the nonlinear fractional problem on a fine grid to one linear equation on the same fine grid and an original nonlinear problem on a much coarser grid. As a result, our algorithms save total computational cost. Theoretical analysis shows that the two-grid algorithms maintain asymptotically optimal accuracy. Moreover, the numerical experiment presented further confirms the theoretical results. (C) 2021 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:436 / 451
页数:16
相关论文
共 40 条
[1]   A new difference scheme for the time fractional diffusion equation [J].
Alikhanov, Anatoly A. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 280 :424-438
[2]  
[Anonymous], 1975, Sobolev Spaces
[3]   Analysis of two-grid methods for reaction-diffusion equations by expanded mixed finite element methods [J].
Chen, Yanping ;
Liu, Huan-Wen ;
Liu, Shang .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2007, 69 (02) :408-422
[4]   Two-grid methods of finite element solutions for semi-linear elliptic interface problems [J].
Chen, Yanping ;
Li, Qingfeng ;
Wang, Yang ;
Huang, Yunqing .
NUMERICAL ALGORITHMS, 2020, 84 (01) :307-330
[5]   Two-grid methods of expanded mixed finite-element solutions for nonlinear parabolic problems [J].
Chen, Yanping ;
Wang, Yang ;
Huang, Yunqing ;
Fu, Longxia .
APPLIED NUMERICAL MATHEMATICS, 2019, 144 :204-222
[6]   A two-grid method for expanded mixed finite-element solution of semilinear reaction-diffusion equations [J].
Chen, YP ;
Huang, YQ ;
Yu, DH .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2003, 57 (02) :193-209
[7]  
Ciarlet PG, 2002, The Finite Element Method for Elliptic Problems
[8]   Convolution quadrature time discretization of fractional diffusion-wave equations [J].
Cuesta, E ;
Lubich, C ;
Palencia, C .
MATHEMATICS OF COMPUTATION, 2006, 75 (254) :673-696
[9]   LOCAL DISCONTINUOUS GALERKIN METHODS FOR FRACTIONAL DIFFUSION EQUATIONS [J].
Deng, W. H. ;
Hesthaven, J. S. .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2013, 47 (06) :1845-1864
[10]  
Hilfer R., 2000, APPL FRACTIONAL CALC