Separation of variables of a generalized porous medium equation with nonlinear source

被引:88
作者
Estévez, PG
Qu, CZ
Zhang, SL
机构
[1] Univ Salamanca, Fac Ciencias, Area Fis Teor, Salamanca 37008, Spain
[2] NW Univ Xian, Dept Math, Xian 710069, Peoples R China
关键词
separation of variable; symmetry group; generalized conditional symmetry; nonlinear diffusion equation; exact solution;
D O I
10.1016/S0022-247X(02)00214-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper considers a general form of the porous medium equation with nonlinear source term: u(t) = (D(u)u(x)(n))(x) + F(u), n not equal 1. The functional separation of variables of this equation is studied by using the generalized conditional symmetry approach. We obtain a complete list of canonical forms for such equations which admit the functional separable solutions. As a consequence, some exact solutions to the resulting equations are constructed, and their behavior are also investigated. (C) 2002 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:44 / 59
页数:16
相关论文
共 59 条
[1]  
AKHATOV IS, 1987, SOV MATH DOKL, V35, P384
[2]  
AMES WF, 1972, NONLINEAR PARTIAL DI, V2
[3]  
[Anonymous], REP MATH PHYS
[4]   NONCLASSICAL SYMMETRY REDUCTIONS OF THE LINEAR DIFFUSION EQUATION WITH A NONLINEAR SOURCE [J].
ARRIGO, DJ ;
HILL, JM ;
BROADBRIDGE, P .
IMA JOURNAL OF APPLIED MATHEMATICS, 1994, 52 (01) :1-24
[5]  
BLUMAN GW, 1969, J MATH MECH, V18, P1025
[6]   NEW CLASSES OF SYMMETRIES FOR PARTIAL-DIFFERENTIAL EQUATIONS [J].
BLUMAN, GW ;
REID, GJ ;
KUMEI, S .
JOURNAL OF MATHEMATICAL PHYSICS, 1988, 29 (04) :806-811
[7]   HOMOLOGY AND THE NONLINEAR HEAT DIFFUSION EQUATION [J].
BURGAN, JR ;
MUNIER, A ;
FEIX, MR ;
FIJALKOW, E .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1984, 44 (01) :11-18
[8]   PAINLEVE EXPANSIONS FOR NONINTEGRABLE EVOLUTION-EQUATIONS [J].
CARIELLO, F ;
TABOR, M .
PHYSICA D, 1989, 39 (01) :77-94
[9]  
CHEMIHA RM, 1998, EUR J APPL MATH, V9, P527
[10]   New non-Lie ansatze and exact solutions of nonlinear reaction-diffusion-convection equations [J].
Cherniha, RM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (40) :8179-8198