A single-step and simplified graphics processing unit lattice Boltzmann method for high turbulent flows

被引:7
作者
Delgado-Gutierrez, Arturo [1 ]
Marzocca, Pier [2 ]
Cardenas, Diego [3 ]
Probst, Oliver [4 ]
机构
[1] Tecnol Monterrey, Sch Engn & Sci, Ciudad De Mexico, Mexico
[2] RMIT Univ, Aerosp Engn & Aviat, Melbourne, Vic, Australia
[3] Tecnol Monterrey, Sch Engn & Sci, Av Gen Ramon Corona 2514, Zapopan 45138, Jalisco, Mexico
[4] Tecnol Monterrey, Sch Engn & Sci, Monterrey, Mexico
关键词
compute shaders; fluid simulation; GPU; jet flow; lattice Boltzmann Method; LES model; lid‐ driven cavity; OpenGL; DRIVEN CAVITY FLOW; SIMULATION; STABILITY;
D O I
10.1002/fld.4976
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this work, a low-computational cost graphics processing unit (GPU) lattice Boltzmann Method, coupled with the LES Vreman turbulence model is presented. The algorithm is capable of simulating low- and high-turbulence flows. In contrast to the fractional-step presented in the Simplified Lattice Boltzmann Method, the proposed work uses a single-step approach, allowing faster computations of the macroscopic variables without losing any spatial accuracy. Inspired by a recently introduced directional interpolation method for the probability distribution functions, the macroscopic variables for different locations are computed separately, enabling an even further simplification of the steps needed to predict the following time-step. Similar to the simplified lattice Boltzmann method, this work reduces the required memory allocation by storing only the macroscopic variables. Multiple benchmark cases are presented to compare with results reported in the literature. Excellent agreement with reports in the literature are obtained, while improving the overall computational performance of the algorithm.
引用
收藏
页码:2339 / 2361
页数:23
相关论文
共 50 条
[11]   LATTICE BOLTZMANN SIMULATIONS OF CAVITY FLOWS ON GRAPHIC PROCESSING UNIT WITH MEMORY MANAGEMENT [J].
Hong, P. Y. ;
Huang, L. M. ;
Chang, C. Y. ;
Lin, C. A. .
JOURNAL OF MECHANICS, 2017, 33 (06) :863-871
[12]   Lattice Boltzmann Method for the Simulation of High Reynolds Number Flows [J].
Liu, Qiang ;
Xie, Wei ;
Qiu, Liaoyuan ;
Xie, Xueshen .
ADVANCES IN COMPUTATIONAL MODELING AND SIMULATION, PTS 1 AND 2, 2014, 444-445 :352-356
[13]   A graphic processing unit implementation for the moment representation of the lattice Boltzmann method [J].
Ferrari, Marco A. A. ;
de Oliveira Jr, Waine B. B. ;
Lugarini, Alan ;
Franco, Admilson T. T. ;
Hegele Jr, Luiz A. A. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2023, 95 (07) :1076-1089
[14]   Consistent Forcing Scheme in the Simplified Lattice Boltzmann Method for Incompressible Flows [J].
Gao, Yuan ;
Yang, Liuming ;
Yu, Yang ;
Hou, Guoxiang ;
Hou, Zhongbao .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2021, 30 (05) :1427-1452
[15]   A simplified axisymmetric lattice Boltzmann method for incompressible swirling and rotating flows [J].
Chen, Z. ;
Shu, C. ;
Zhang, L. Q. .
PHYSICS OF FLUIDS, 2019, 31 (02)
[16]   Optimized implementation of the Lattice Boltzmann Method on a graphics processing unit towards real-time fluid simulation [J].
Delbosc, N. ;
Summers, J. L. ;
Khan, A. I. ;
Kapur, N. ;
Noakes, C. J. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 67 (02) :462-475
[17]   Entropic Lattice Boltzmann Method for high Reynolds number fluid flows [J].
Xu, Hui ;
Luan, Hui-Bao ;
Tang, Gui-Hua ;
Tao, Wen-Quan .
PROGRESS IN COMPUTATIONAL FLUID DYNAMICS, 2009, 9 (3-5) :183-193
[18]   A lattice Boltzmann method for axisymmetric multicomponent flows with high viscosity ratio [J].
Liu, Haihu ;
Wu, Lei ;
Ba, Yan ;
Xi, Guang ;
Zhang, Yonghao .
JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 327 :873-893
[19]   Simplified lattice Boltzmann method for non-Newtonian power-law fluid flows [J].
Chen, Zhen ;
Shu, Chang .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2020, 92 (01) :38-54
[20]   Unified simplified multiphase lattice Boltzmann method for ferrofluid flows and its application [J].
Li, Qiao-Zhong ;
Lu, Zhi-Liang ;
Zhou, Di ;
Niu, Xiao-Dong ;
Guo, Tong-Qin ;
Du, Bing-Chen .
PHYSICS OF FLUIDS, 2020, 32 (09)