A single-step and simplified graphics processing unit lattice Boltzmann method for high turbulent flows

被引:7
作者
Delgado-Gutierrez, Arturo [1 ]
Marzocca, Pier [2 ]
Cardenas, Diego [3 ]
Probst, Oliver [4 ]
机构
[1] Tecnol Monterrey, Sch Engn & Sci, Ciudad De Mexico, Mexico
[2] RMIT Univ, Aerosp Engn & Aviat, Melbourne, Vic, Australia
[3] Tecnol Monterrey, Sch Engn & Sci, Av Gen Ramon Corona 2514, Zapopan 45138, Jalisco, Mexico
[4] Tecnol Monterrey, Sch Engn & Sci, Monterrey, Mexico
关键词
compute shaders; fluid simulation; GPU; jet flow; lattice Boltzmann Method; LES model; lid‐ driven cavity; OpenGL; DRIVEN CAVITY FLOW; SIMULATION; STABILITY;
D O I
10.1002/fld.4976
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this work, a low-computational cost graphics processing unit (GPU) lattice Boltzmann Method, coupled with the LES Vreman turbulence model is presented. The algorithm is capable of simulating low- and high-turbulence flows. In contrast to the fractional-step presented in the Simplified Lattice Boltzmann Method, the proposed work uses a single-step approach, allowing faster computations of the macroscopic variables without losing any spatial accuracy. Inspired by a recently introduced directional interpolation method for the probability distribution functions, the macroscopic variables for different locations are computed separately, enabling an even further simplification of the steps needed to predict the following time-step. Similar to the simplified lattice Boltzmann method, this work reduces the required memory allocation by storing only the macroscopic variables. Multiple benchmark cases are presented to compare with results reported in the literature. Excellent agreement with reports in the literature are obtained, while improving the overall computational performance of the algorithm.
引用
收藏
页码:2339 / 2361
页数:23
相关论文
共 50 条
[1]   An efficient implementation of the graphics processing unit-accelerated single-step and simplified lattice Boltzmann method for irregular fluid domains [J].
Delgado-Gutierrez, Arturo ;
Marzocca, Pier ;
Cardenas-Fuentes, Diego ;
Probst, Oliver ;
Montesinos-Castellanos, Alejandro .
PHYSICS OF FLUIDS, 2022, 34 (12)
[2]   High-order simplified thermal lattice Boltzmann method for incompressible thermal flows [J].
Chen, Z. ;
Shu, C. ;
Tan, D. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 127 :1-16
[3]   Lattice Boltzmann method for axisymmetric turbulent flows [J].
Wang, Wei ;
Zhou, Jian Guo .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2015, 26 (09)
[4]   A Simplified Lattice Boltzmann Method for Turbulent Flow Simulation [J].
Jiang, Lan ;
Gu, Xiangyu ;
Wu, Jie .
ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2022, 14 (05) :1040-1058
[5]   Sediment transport in turbulent flows with the lattice Boltzmann method [J].
Morrison, Helen E. ;
Leder, Alfred .
COMPUTERS & FLUIDS, 2018, 172 :340-351
[6]   One-step simplified lattice Boltzmann method of thermal flows under the Boussinesq approximation [J].
Qin, Shenglei ;
Hou, Guoxiang ;
Yang, Liuming ;
Liu, Xu ;
Luo, Haoze .
PHYSICAL REVIEW E, 2023, 108 (04)
[7]   An Efficient Graphics Processing Unit Scheme for Complex Geometry Simulations Using the Lattice Boltzmann Method [J].
Zhu, Hongyin ;
Xu, Xin ;
Huang, Gang ;
Qin, Zhangrong ;
Wen, Binghai .
IEEE ACCESS, 2020, 8 :185158-185168
[8]   A fractional step lattice Boltzmann method for simulating high Reynolds number flows [J].
Shu, C. ;
Niu, X. D. ;
Chew, Y. T. ;
Cai, Q. D. .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2006, 72 (2-6) :201-205
[9]   A new approach to the lattice Boltzmann method for graphics processing units [J].
Obrecht, Christian ;
Kuznik, Frederic ;
Tourancheau, Bernard ;
Roux, Jean-Jacques .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (12) :3628-3638
[10]   Development of a coupled simplified lattice Boltzmann method for thermal flows [J].
Gao, Yuan ;
Yu, Yang ;
Yang, Liuming ;
Qin, Shenglei ;
Hou, Guoxiang .
COMPUTERS & FLUIDS, 2021, 229 (229)