Exact results for the Barabaacutesi queuing model

被引:10
作者
Anteneodo, C. [1 ,2 ]
机构
[1] Pontificia Univ Catolica Rio de Janeiro, Dept Fis, BR-22453900 Rio De Janeiro, Brazil
[2] Natl Inst Sci & Technol Complex Syst, BR-22453900 Rio De Janeiro, Brazil
来源
PHYSICAL REVIEW E | 2009年 / 80卷 / 04期
关键词
interpolation; master equation; queueing theory; statistical analysis; WALKS;
D O I
10.1103/PhysRevE.80.041131
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Previous works on the queuing model introduced by Barabaacutesi to account for the heavy tailed distributions of the temporal patterns found in many human activities mainly concentrate on the extremal dynamics case and on lists of only two items. Here we obtain exact results for the general case with arbitrary values of the list length L and of the degree of randomness that interpolates between the deterministic and purely random limits. The statistically fundamental quantities are extracted from the solution of master equations. From this analysis, scaling features of the model are uncovered.
引用
收藏
页数:7
相关论文
共 16 条
[1]   PUNCTUATED EQUILIBRIUM AND CRITICALITY IN A SIMPLE-MODEL OF EVOLUTION [J].
BAK, P ;
SNEPPEN, K .
PHYSICAL REVIEW LETTERS, 1993, 71 (24) :4083-4086
[2]   The origin of bursts and heavy tails in human dynamics [J].
Barabási, AL .
NATURE, 2005, 435 (7039) :207-211
[3]   Modeling human activity in the spirit of Barabasi's queueing systems [J].
Blanchard, Ph. ;
Hongler, M. -O. .
PHYSICAL REVIEW E, 2007, 75 (02)
[4]   Role of optimization in the human dynamics of task execution [J].
Cajueiro, Daniel O. ;
Maldonado, Wilfredo L. .
PHYSICAL REVIEW E, 2008, 77 (03)
[5]   SIMPLE-MODEL OF SELF-ORGANIZED BIOLOGICAL EVOLUTION [J].
DEBOER, J ;
DERRIDA, B ;
FLYVBJERG, H ;
JACKSON, AD ;
WETTIG, T .
PHYSICAL REVIEW LETTERS, 1994, 73 (06) :906-909
[6]  
Feller W., 1957, An Introduction to Probability Theory and Its Applications
[7]   WALKS, WALLS, WETTING, AND MELTING [J].
FISHER, ME .
JOURNAL OF STATISTICAL PHYSICS, 1984, 34 (5-6) :667-729
[8]   MEAN-FIELD THEORY FOR A SIMPLE-MODEL OF EVOLUTION [J].
FLYVBJERG, H ;
SNEPPEN, K ;
BAK, P .
PHYSICAL REVIEW LETTERS, 1993, 71 (24) :4087-4090
[9]   Invasion percolation on a tree and queueing models [J].
Gabrielli, A. ;
Caldarelli, G. .
PHYSICAL REVIEW E, 2009, 79 (04)
[10]   Invasion percolation and critical transient in the Barabasi model of human dynamics [J].
Gabrielli, A. ;
Caldarelli, G. .
PHYSICAL REVIEW LETTERS, 2007, 98 (20)