A new kernel function yielding the best known iteration bounds for primal-dual interior-point algorithms

被引:17
作者
Bai, Yan Qin [1 ]
Guo, Jin Li [2 ]
Roos, Cornelis [3 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200436, Peoples R China
[2] Shanghai Univ Sci & Technol, Sch Business, Shanghai 200093, Peoples R China
[3] Delft Univ Technol, Fac Elect Engn Math & Comp Sci, NL-2600 GA Delft, Netherlands
基金
中国国家自然科学基金;
关键词
linear optimization; interior-point method; primal-dual method; large-update method; polynomial complexity;
D O I
10.1007/s10114-009-6457-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Kernel functions play an important role in defining new search directions for primal-dual interior-point algorithm for solving linear optimization problems. In this paper we present a new kernel function which yields an algorithm with the best known complexity bound for both large- and small-update methods.
引用
收藏
页码:2169 / 2178
页数:10
相关论文
共 8 条
[1]   A comparative study of kernel functions for primal-dual interior-point algorithms in linear optimization [J].
Bai, YQ ;
El Ghami, M ;
Roos, C .
SIAM JOURNAL ON OPTIMIZATION, 2004, 15 (01) :101-128
[2]   A new efficient large-update primal-dual interior-point method based on a finite barrier [J].
Bai, YQ ;
El Ghami, M ;
Roos, C .
SIAM JOURNAL ON OPTIMIZATION, 2003, 13 (03) :766-782
[3]  
Megiddo N., 1989, PROGR MATH PROGRAMMI, P131, DOI 10.1007/978-1-4613-9617-8_8
[4]  
Peng J., 2001, J. Comput. Technol., V6, P61
[5]  
Peng Jiming., 2002, PRIN SER APPL MATH
[6]  
ROSS C, 2005, THEORY ALGORITHMS LI
[7]  
SONNEVEND G, 1986, LECT NOTES CONTR INF, V84, P866
[8]   Primal-dual interior-point algorithms for second-order cone optimization based on a new parametric kernel function [J].
Yan Qin Bai ;
Guo Qiang Wang .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2007, 23 (11) :2027-2042