A CNC approach for Directional Total Variation

被引:0
作者
Scrivanti, Gabriele [1 ]
Chouzenoux, Emilie [1 ]
Pesquet, Jean-Christophe [1 ]
机构
[1] Univ Paris Saclay, CVN, CentraleSupelec, INRIA, Gif Sur Yvette, France
来源
2022 30TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2022) | 2022年
关键词
Directional Total Variation; Denoising; Non-convex and non-smooth regularisation; Primal-Dual Algorithm; REGULARIZATION; ALGORITHM;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The core of many approaches for the resolution of variational inverse problems arising in signal and image processing consists of promoting the sought solution to have a sparse representation in a well-suited space. A crucial task in this context is the choice of a good sparsity prior that can ensure a good trade-off between the quality of the solution and the resulting computational cost. The recently introduced Convex-Non-Convex (CNC) strategy appears as a great compromise, as it combines the high qualitative performance of non-convex sparsity-promoting functions with the convenience of dealing with convex optimization problems. This work proposes a new variational formulation to implement CNC approach in the context of image denoising. By suitably exploiting duality properties, our formulation allows to encompass sophisticated directional total variation (DTV) priors. We additionally propose an efficient optimisation strategy for the resulting convex minimisation problem. We illustrate on numerical examples the good performance of the resulting CNC-DTV method, when compared to the standard convex total variation denoiser.
引用
收藏
页码:488 / 492
页数:5
相关论文
共 22 条
  • [1] A splitting algorithm for dual monotone inclusions involving cocoercive operators
    Bang Cong Vu
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2013, 38 (03) : 667 - 681
  • [2] Bauschke HH, 2011, CMS BOOKS MATH, P1, DOI 10.1007/978-1-4419-9467-7
  • [3] Directional Total Variation
    Bayram, Ilker
    Kamasak, Mustafa E.
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2012, 19 (12) : 781 - 784
  • [4] Total Generalized Variation
    Bredies, Kristian
    Kunisch, Karl
    Pock, Thomas
    [J]. SIAM JOURNAL ON IMAGING SCIENCES, 2010, 3 (03): : 492 - 526
  • [5] A Flexible Space-Variant Anisotropic Regularization for Image Restoration with Automated Parameter Selection
    Calatroni, Luca
    Lanza, Alessandro
    Pragliola, Monica
    Sgallari, Fiorella
    [J]. SIAM JOURNAL ON IMAGING SCIENCES, 2019, 12 (02): : 1001 - 1037
  • [6] Chambolle A, 2004, J MATH IMAGING VIS, V20, P89
  • [7] Convex non-convex image segmentation
    Chan, Raymond
    Lanza, Alessandro
    Morigi, Serena
    Sgallari, Fiorella
    [J]. NUMERISCHE MATHEMATIK, 2018, 138 (03) : 635 - 680
  • [8] Fixed Point Strategies in Data Science
    Combettes, Patrick L.
    Pesquet, Jean-Christophe
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 3878 - 3905
  • [9] A Primal-Dual Splitting Method for Convex Optimization Involving Lipschitzian, Proximable and Linear Composite Terms
    Condat, Laurent
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2013, 158 (02) : 460 - 479
  • [10] Playing with Duality
    Komodakis, Nikos
    Pesquet, Jean-Christophe
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2015, 32 (06) : 31 - 54