FishEyeRecNet: A Multi-context Collaborative Deep Network for Fisheye Image Rectification

被引:92
作者
Yin, Xiaoqing [1 ,2 ]
Wang, Xinchao [3 ]
Yu, Jun [4 ]
Zhang, Maojun [2 ]
Fua, Pascal [5 ]
Tao, Dacheng [1 ]
机构
[1] Univ Sydney, UBTECH Sydney AI Ctr, FEIT, SIT, Sydney, NSW, Australia
[2] Natl Univ Def Technol, Changsha, Peoples R China
[3] Stevens Inst Technol, Hoboken, NJ 07030 USA
[4] Hangzhou Dianzi Univ, Hangzhou, Peoples R China
[5] Ecole Polytech Fed Lausanne, Lausanne, Switzerland
来源
COMPUTER VISION - ECCV 2018, PT X | 2018年 / 11214卷
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
Fisheye image rectification; Distortion parameter estimation; Collaborative deep network;
D O I
10.1007/978-3-030-01249-6_29
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Images captured by fisheye lenses violate the pinhole camera assumption and suffer from distortions. Rectification of fisheye images is therefore a crucial preprocessing step for many computer vision applications. In this paper, we propose an end-to-end multi-context collaborative deep network for removing distortions from single fisheye images. In contrast to conventional approaches, which focus on extracting hand-crafted features from input images, our method learns high-level semantics and low-level appearance features simultaneously to estimate the distortion parameters. To facilitate training, we construct a synthesized dataset that covers various scenes and distortion parameter settings. Experiments on both synthesized and real-world datasets show that the proposed model significantly outperforms current state of the art methods. Our code and synthesized dataset will be made publicly available.
引用
收藏
页码:475 / 490
页数:16
相关论文
共 27 条
[11]   Caffe: Convolutional Architecture for Fast Feature Embedding [J].
Jia, Yangqing ;
Shelhamer, Evan ;
Donahue, Jeff ;
Karayev, Sergey ;
Long, Jonathan ;
Girshick, Ross ;
Guadarrama, Sergio ;
Darrell, Trevor .
PROCEEDINGS OF THE 2014 ACM CONFERENCE ON MULTIMEDIA (MM'14), 2014, :675-678
[12]   A generic camera calibration method for fish-eye lenses [J].
Kannala, J ;
Brandt, S .
PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 1, 2004, :10-13
[13]  
Liu D., 2017, ARXIV170604284
[14]  
Mei X, 2015, IEEE IMAGE PROC, P3615, DOI 10.1109/ICIP.2015.7351478
[15]   Unsupervised intrinsic calibration from a single frame using a "plumb-line" approach [J].
Melo, R. ;
Antunes, M. ;
Barreto, J. P. ;
Falcao, G. ;
Goncalves, N. .
2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2013, :537-544
[16]  
Orlosky J., 2014, P 2 ACM S SPAT US IN, P54
[17]  
Qu L., 2017, DESHADOWNET MULTICON
[18]   Radial Lens Distortion Correction Using Convolutional Neural Networks Trained with Synthesized Images [J].
Rong, Jiangpeng ;
Huang, Shiyao ;
Shang, Zeyu ;
Ying, Xianghua .
COMPUTER VISION - ACCV 2016, PT III, 2017, 10113 :35-49
[19]   Camera distortion self-calibration using the plumb-line constraint and minimal Hough entropy [J].
Rosten, Edward ;
Loveland, Rohan .
MACHINE VISION AND APPLICATIONS, 2011, 22 (01) :77-85
[20]  
SHAH S, 1994, IEEE IMAGE PROC, P740, DOI 10.1109/ICIP.1994.413669