The Role of Nanomedicine in Growing Tissues

被引:33
作者
Chun, Young Wook [1 ]
Webster, Thomas J. [1 ]
机构
[1] Brown Univ, Div Engn, Dept Orthoped, Providence, RI 02912 USA
基金
美国国家科学基金会;
关键词
Implants; Nanotechnology; Bone; Bladder; Neural; Nanotopography; Nanomedicine; NANOMETER SURFACE-FEATURES; TRANSITIONAL-CELL CARCINOMA; CARBON NANOTUBES; OSTEOBLAST ADHESION; ENHANCED FUNCTIONS; URINARY-BLADDER; VASCULAR CELLS; POLYMERS; TITANIUM; BIOCOMPATIBILITY;
D O I
10.1007/s10439-009-9722-1
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Nanomedicine (a division of nanotechnology) is an interdisciplinary research field incorporating biology, chemistry, engineering and medicine with the intention to improve disease prevention, diagnosis, and treatment. Specifically, there have been great strides made in using nanomedicine to enhance the functions of cells necessary to regenerate a diverse number of tissues (such as bone, blood vessels, the bladder, teeth, the nervous system, and the heart to name a few). Traditional (micron-structured or nano-smooth) implants suffer from: (i) infection, (ii) inflammation, and (iii) insufficient prolonged bonding between the implanted material and surrounding tissue. To date, such conventional implants have been improved by implementing nanotopographical features on their surfaces. In this review paper, the application of nanomaterials to regenerate numerous organs (including, as specific examples, bone, neural, and bladder tissues) will be presented with necessary future directions highlighted for the field of nanomedicine to progress.
引用
收藏
页码:2034 / 2047
页数:14
相关论文
共 96 条
[1]   Biocompatibility of layer-by-layer self-assembled nanofilm on silicone rubber for neurons [J].
Ai, H ;
Meng, HD ;
Ichinose, I ;
Jones, SA ;
Mills, DK ;
Lvov, YM ;
Qiao, XX .
JOURNAL OF NEUROSCIENCE METHODS, 2003, 128 (1-2) :1-8
[2]   Cell adhesion on nanofibrous polytetrafluoroethylene (nPTFE) [J].
Ainslie, Kristy M. ;
Bachelder, Eric M. ;
Borkar, Sachin ;
Zahr, Alisar S. ;
Sen, Ayusman ;
Badding, John V. ;
Pishko, Michael V. .
LANGMUIR, 2007, 23 (02) :747-754
[3]  
ARARRATEGI A, 2008, BIOMATERIALS, V29, P94, DOI DOI 10.1016/J.BIOMATERIALS.2007.09.021
[4]  
Atala Anthony, 1997, P149
[5]   An overview of nano-polymers for orthopedic applications [J].
Balasundaram, Ganesan ;
Webster, Thomas J. .
MACROMOLECULAR BIOSCIENCE, 2007, 7 (05) :635-642
[6]   Carbon nanotube actuators [J].
Baughman, RH ;
Cui, CX ;
Zakhidov, AA ;
Iqbal, Z ;
Barisci, JN ;
Spinks, GM ;
Wallace, GG ;
Mazzoldi, A ;
De Rossi, D ;
Rinzler, AG ;
Jaschinski, O ;
Roth, S ;
Kertesz, M .
SCIENCE, 1999, 284 (5418) :1340-1344
[7]   Playing nature's game with artificial muscles [J].
Baughman, RH .
SCIENCE, 2005, 308 (5718) :63-65
[8]  
Bona A.V., 1966, Minerva Urology, V18, P43
[9]   Biomimetic materials replicating Schwann cell topography enhance neuronal adhesion and neurite alignment in vitro [J].
Bruder, Jan M. ;
Lee, Andrea P. ;
Hoffman-Kim, Diane .
JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2007, 18 (08) :967-982
[10]   Interfacing carbon nanotubes with living cells [J].
Chen, Xing ;
Tam, Un Chong ;
Czlapinski, Jennifer L. ;
Lee, Goo Soo ;
Rabuka, David ;
Zettl, Alex ;
Bertozzi, Carolyn R. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (19) :6292-6293