Stability analysis of semi-Markov switched stochastic systems

被引:254
作者
Wang, Bao [1 ,2 ]
Zhu, Quanxin [1 ,3 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci & Inst Math, Nanjing 210023, Jiangsu, Peoples R China
[2] Xuzhou Inst Technol, Coll Math & Phys, Xuzhou 221000, Jiangsu, Peoples R China
[3] Hunan Normal Univ, Coll Math & Stat, Key Lab HPC SIP MOE, Changsha 410081, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Semi-Markov process; Stochastic systems; Multiple Lyapunov functions; Stochastic asymptotic stability in the large; FUNCTIONAL-DIFFERENTIAL EQUATIONS; EXPONENTIAL STABILITY; LINEAR-SYSTEMS; STABILIZATION; DESIGN;
D O I
10.1016/j.automatica.2018.04.016
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper investigates the asymptotic stability of semi-Markov switched stochastic systems. Based on the method of multiple Lyapunov functions and the structure of semi-Markov process, we provide sufficient conditions of stochastic asymptotic stability in the large for semi-Markov switched stochastic systems without the constraint of bounded transition rates. Particularly, our results generalize and improve some published results in the literature. An example and its simulation are given to illustrate the theoretical results. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:72 / 80
页数:9
相关论文
共 34 条
[1]  
[Anonymous], IEEE T AUTOMATIC CON
[2]   On almost sure stability of continuous-time Markov jump linear systems [J].
Bolzern, P. ;
Colaneri, P. ;
De Nicolao, G. .
AUTOMATICA, 2006, 42 (06) :983-988
[3]  
Bremaud P., 1998, MARKOV CHAINS GIBBS
[4]   STABILIZING RANDOMLY SWITCHED SYSTEMS [J].
Chatterjee, Debasish ;
Liberzon, Daniel .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2011, 49 (05) :2008-2031
[5]   Stability analysis and stabilization of randomly switched systems [J].
Chatterjee, Debasish ;
Liberzon, Daniel .
PROCEEDINGS OF THE 45TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2006, :2643-2648
[6]   Stochastic stabilization of hybrid differential equations [J].
Deng, Feiqi ;
Luo, Qi ;
Mao, Xuerong .
AUTOMATICA, 2012, 48 (09) :2321-2328
[7]   Stochastic stability and stabilization of Markov jump linear systems with instantly time-varying transition rates: A unified framework [J].
Faraji-Niri, Mona ;
Jahed-Motlagh, Mohammad-Reza .
ISA TRANSACTIONS, 2016, 65 :51-61
[8]   RISK MINIMIZING OPTION PRICING IN A SEMI-MARKOV MODULATED MARKET [J].
Ghosh, Mrinal K. ;
Goswami, Anindya .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2009, 48 (03) :1519-1541
[9]   Stochastic stability of Ito differential equations with semi-Markovian jump parameters [J].
Hou, Zhenting ;
Luo, Jiaowan ;
Shi, Peng ;
Nguang, Sing Kiong .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2006, 51 (08) :1383-1387
[10]   Convergence of jump-diffusion non-linear differential equation with phase semi-Markovian switching [J].
Hou, Zhenting ;
Tong, Jinying ;
Zhang, Zhenzhong .
APPLIED MATHEMATICAL MODELLING, 2009, 33 (09) :3650-3660