New blow-up conditions to p-Laplace type nonlinear parabolic equations under nonlinear boundary conditions

被引:0
作者
Chung, Soon-Yeong [1 ,2 ,3 ]
Hwang, Jaeho [4 ]
机构
[1] Natl Inst Math Sci, Daejeon, South Korea
[2] Sogang Univ, Dept Math, Seoul, South Korea
[3] Sogang Univ, Program Integrated Biotechnol, Seoul, South Korea
[4] Sogang Univ, Res Inst Basic Sci, Seoul 04107, South Korea
关键词
blow-up; nonlinear boundary; nonlinear parabolic equation; p-Laplacian; HEAT-EQUATION; POSITIVE SOLUTIONS; GLOBAL EXISTENCE; TIME;
D O I
10.1002/mma.7172
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study blow-up phenomena of the following p-Laplace type nonlinear parabolic equations u(t) = del center dot rho(vertical bar del u vertical bar(p))vertical bar del u vertical bar(p-2) del u+f(x,t,u), in Omega x(0,t*), under nonlinear mixed boundary conditions rho(vertical bar del u vertical bar(p))vertical bar del u vertical bar(p-2)partial derivative u/partial derivative n+theta(z)rho(vertical bar u vertical bar vertical bar p)vertical bar u vertical bar p-2u=h(z,t,u),on Gamma 1x(0,t*), and u=0 on Gamma(2) x (0, t*) such that Gamma(1)boolean OR Gamma(2)= partial derivative omega, where f and h are real-valued C-1-functions. To discuss blow-up solutions, we introduce new conditions: For each x is an element of omega, z is an element of partial derivative Omega, t > 0, u > 0, and v > 0, (D(p)1):alpha F(x,t,u)<= uf(x,t,u)+beta 1up+gamma 1, alpha H(z,t,u)<= uh(z,t,u)+beta 2up+gamma 2, (Dp2):delta v rho(v)<= P(v), for some constants alpha, beta(1), beta(2), gamma(1), gamma(2), and delta satisfying alpha>2,delta>0,beta(1)+lambda(R)+1/lambda(S) beta(2)<= (alpha delta/p-1)rho(m)lambda(R), and 0 <=beta(2)<= (alpha delta/p-1)rho(m)lambda(S), where rho m:=infw>0 rho(w), P(v)=integral 0v rho(w)dw, F(x,t,u)=integral 0uf(x,t,w)dw, and (x,t,u)=integral 0uh(x,t,w)dw. Here, lambda(R) is the first Robin eigenvalue and lambda(S) is the first Steklov eigenvalue for the p-Laplace operator, respectively.
引用
收藏
页码:6086 / 6100
页数:15
相关论文
共 32 条
[11]   Blow-up analysis for a class of nonlinear reaction diffusion equations with Robin boundary conditions [J].
Ding, Juntang ;
Shen, Xuhui .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (04) :1683-1696
[12]   Blow-up solutions for nonlinear reaction diffusion equations under Neumann boundary conditions [J].
Ding, Juntang ;
Hu, Hongjuan .
APPLICABLE ANALYSIS, 2017, 96 (04) :549-562
[13]   Blow-up in p-Laplacian heat equations with nonlinear boundary conditions [J].
Ding, Juntang ;
Shen, Xuhui .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (05)
[14]   Blow-up and global solutions for a class of nonlinear reaction diffusion equations under Dirichlet boundary conditions [J].
Ding, Juntang ;
Hu, Hongjuan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 433 (02) :1718-1735
[15]  
Evans L.C., 2010, Partial Differential Equations, DOI DOI 10.1112/BLMS/20.4.375
[16]   EIGENVALUE INEQUALITIES FOR DIRICHLET PROBLEM ON SPHERES AND GROWTH OF SUBHARMONIC FUNCTIONS [J].
FRIEDLAND, S ;
HAYMAN, WK .
COMMENTARII MATHEMATICI HELVETICI, 1976, 51 (02) :133-161
[17]   BLOW-UP OF POSITIVE SOLUTIONS OF SEMILINEAR HEAT-EQUATIONS [J].
FRIEDMAN, A ;
MCLEOD, B .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1985, 34 (02) :425-447
[18]   EXISTENCE AND UNIQUENESS OF POSITIVE SOLUTIONS TO ELLIPTIC PROBLEMS WITH SUBLINEAR MIXED BOUNDARY CONDITIONS [J].
Garcia-Melian, Jorge ;
Rossi, Julio D. ;
Sabina De Lis, Jose C. .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2009, 11 (04) :585-613
[19]   A necessary and sufficient condition for global existence for a degenerate parabolic boundary value problem [J].
Lair, AV ;
Oxley, ME .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 221 (01) :338-348
[20]   Eigenvalue problems for the p-Laplacian [J].
Lê, A .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (05) :1057-1099