New blow-up conditions to p-Laplace type nonlinear parabolic equations under nonlinear boundary conditions

被引:0
作者
Chung, Soon-Yeong [1 ,2 ,3 ]
Hwang, Jaeho [4 ]
机构
[1] Natl Inst Math Sci, Daejeon, South Korea
[2] Sogang Univ, Dept Math, Seoul, South Korea
[3] Sogang Univ, Program Integrated Biotechnol, Seoul, South Korea
[4] Sogang Univ, Res Inst Basic Sci, Seoul 04107, South Korea
关键词
blow-up; nonlinear boundary; nonlinear parabolic equation; p-Laplacian; HEAT-EQUATION; POSITIVE SOLUTIONS; GLOBAL EXISTENCE; TIME;
D O I
10.1002/mma.7172
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study blow-up phenomena of the following p-Laplace type nonlinear parabolic equations u(t) = del center dot rho(vertical bar del u vertical bar(p))vertical bar del u vertical bar(p-2) del u+f(x,t,u), in Omega x(0,t*), under nonlinear mixed boundary conditions rho(vertical bar del u vertical bar(p))vertical bar del u vertical bar(p-2)partial derivative u/partial derivative n+theta(z)rho(vertical bar u vertical bar vertical bar p)vertical bar u vertical bar p-2u=h(z,t,u),on Gamma 1x(0,t*), and u=0 on Gamma(2) x (0, t*) such that Gamma(1)boolean OR Gamma(2)= partial derivative omega, where f and h are real-valued C-1-functions. To discuss blow-up solutions, we introduce new conditions: For each x is an element of omega, z is an element of partial derivative Omega, t > 0, u > 0, and v > 0, (D(p)1):alpha F(x,t,u)<= uf(x,t,u)+beta 1up+gamma 1, alpha H(z,t,u)<= uh(z,t,u)+beta 2up+gamma 2, (Dp2):delta v rho(v)<= P(v), for some constants alpha, beta(1), beta(2), gamma(1), gamma(2), and delta satisfying alpha>2,delta>0,beta(1)+lambda(R)+1/lambda(S) beta(2)<= (alpha delta/p-1)rho(m)lambda(R), and 0 <=beta(2)<= (alpha delta/p-1)rho(m)lambda(S), where rho m:=infw>0 rho(w), P(v)=integral 0v rho(w)dw, F(x,t,u)=integral 0uf(x,t,w)dw, and (x,t,u)=integral 0uh(x,t,w)dw. Here, lambda(R) is the first Robin eigenvalue and lambda(S) is the first Steklov eigenvalue for the p-Laplace operator, respectively.
引用
收藏
页码:6086 / 6100
页数:15
相关论文
共 32 条
[1]   Remarks on Blow-Up Phenomena in p-Laplacian Heat Equation with Inhomogeneous Nonlinearity [J].
Alzahrani, Eadah Ahma ;
Majdoub, Mohamed .
JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2021, 34 (01) :42-50
[2]  
AMANN H, 1986, ARCH RATION MECH AN, V92, P153
[3]  
[Anonymous], 1993, DEGENERATE PARABOLIC, DOI DOI 10.1007/978-1-4612-0895-2
[4]  
Bang S-J., 1987, CHIN J MATH, V15, P237
[5]   Properties of the principal eigenvalues of a general class of non-classical mixed boundary value problems [J].
Cano-Casanova, S ;
López-Gómez, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 178 (01) :123-211
[6]  
Chen W, 2016, BOUND VALUE PROBL, V161, P6
[7]  
Chung S-Y, 2019, BOUND VALUE PROBL PA, V180, P21
[8]   A new condition for the concavity method of blow-up solutions to p-Laplacian parabolic equations [J].
Chung, Soon-Yeong ;
Choi, Min-Jun .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (12) :6384-6399
[9]   A new condition for blow-up solutions to discrete semilinear heat equations on networks [J].
Chung, Soon-Yeong ;
Choi, Min-Jun .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (12) :2929-2939
[10]   Blow-up analysis in quasilinear reaction-diffusion problems with weighted nonlocal source [J].
Ding, Juntang ;
Shen, Xuhui .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (04) :1288-1301