Branching equation of Andronov-Hopf bifurcation under group symmetry conditions

被引:5
作者
Loginov, BV [1 ]
Trenogin, VA [1 ]
机构
[1] MOSCOW STEEL & ALLOYS INST,MOSCOW 117936,RUSSIA
关键词
D O I
10.1063/1.166224
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In branching theory of solutions of nonlinear equations group analysis methods [Ovsyannikov, Group Analysis of Differential Equations (Nauka, Moscow, 1978); Lectures on the Theory of Group Properties of Differential Equations (Novosibirsk University, Novosibirsk, 1966)] give the general approach for the construction of the complete form of branching equation and its subsequent investigation. These methods are applied here to the general situation of Andronov-Hopf bifurcation when there are some multiple semisimple eigenvalues on imaginary axis. (C) 1997 American Institute of Physics.
引用
收藏
页码:229 / 238
页数:10
相关论文
共 40 条
[21]  
LOGINOV BV, 1981, USP MAT NAUK, V36, P209
[22]  
LOGINOV BV, 1975, DIFF URAVN, V11, P1518
[23]  
LOGINOVB BV, 1995, 4 MA LAVR LESS MATH, P28
[24]  
MORHNEVA IV, 1985, SIB MAT ZH, V26, P124
[25]  
MORSHNEVA IV, 1989, THESIS ROSTOV ON DON
[26]  
OVCHINNIKOVA SN, 1968, PMM-J APPL MATH MEC+, V32, P884, DOI 10.1016/0021-8928(68)90009-9
[27]  
OVSYANNIKOV LV, 1966, LECT THEORY GROUP PR, P131
[28]  
OVSYANNIKOV LV, 1982, GROUP ANAL DIFFERENT, P400
[29]   GROUP REPRESENTATION THEORY, BIFURCATION THEORY AND PATTERN FORMATION [J].
SATTINGER, DH .
JOURNAL OF FUNCTIONAL ANALYSIS, 1978, 28 (01) :58-101
[30]  
SATTINGER DH, 1979, LECT NOTES MATH, V762, P240