Branching equation of Andronov-Hopf bifurcation under group symmetry conditions

被引:5
作者
Loginov, BV [1 ]
Trenogin, VA [1 ]
机构
[1] MOSCOW STEEL & ALLOYS INST,MOSCOW 117936,RUSSIA
关键词
D O I
10.1063/1.166224
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In branching theory of solutions of nonlinear equations group analysis methods [Ovsyannikov, Group Analysis of Differential Equations (Nauka, Moscow, 1978); Lectures on the Theory of Group Properties of Differential Equations (Novosibirsk University, Novosibirsk, 1966)] give the general approach for the construction of the complete form of branching equation and its subsequent investigation. These methods are applied here to the general situation of Andronov-Hopf bifurcation when there are some multiple semisimple eigenvalues on imaginary axis. (C) 1997 American Institute of Physics.
引用
收藏
页码:229 / 238
页数:10
相关论文
共 40 条
[11]  
LOGINOV BV, 1995, INT C NONL DIFF EQ U, P101
[12]  
LOGINOV BV, 1992, APPL MATH, V37, P241
[13]  
LOGINOV BV, 1985, BRANCHING THEORY SOL, P184
[14]  
LOGINOV BV, 1978, IZV AKAD NAUK UZ FMN, V3, P20
[15]  
LOGINOV BV, 1990, IZVESTIYA AKAD N FMN, P16
[16]  
LOGINOV BV, 1988, IZV AKAD NAUK UZ FMN, V4, P32
[17]  
LOGINOV BV, 1993, MODERN GROUP ANAL PR, P112
[18]  
LOGINOV BV, 1994, RUSSIAN ACAD SCI DOK, V48, P200
[19]  
LOGINOV BV, 1995, UZBEK MATH J, P58
[20]  
LOGINOV BV, 1987, MIXED TYPE EQUATIONS, P183