Mechanical response and deformation behavior of Al0.6CoCrFeNi high-entropy alloys upon dynamic loading

被引:104
作者
Wang, L. [1 ,2 ]
Qiao, J. W. [3 ]
Ma, S. G. [1 ,2 ]
Jiao, Z. M. [1 ,2 ]
Zhang, T. W. [1 ,2 ]
Chen, G. [1 ,2 ]
Zhao, D. [1 ,2 ]
Zhang, Y. [4 ]
Wang, Z. H. [1 ,2 ]
机构
[1] Taiyuan Univ Technol, Inst Appl Mech & Biomed Engn, Taiyuan 030024, Shanxi, Peoples R China
[2] Taiyuan Univ Technol, Coll Mech, Shanxi Key Lab Mat Strength & Struct Impact, Taiyuan 030024, Shanxi, Peoples R China
[3] Taiyuan Univ Technol, Coll Mat Sci & Engn, Inst High Entropy Alloys, Taiyuan 030024, Shanxi, Peoples R China
[4] Univ Sci & Technol Beijing, State key Lab Adv Met & Mat, Beijing, Peoples R China
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2018年 / 727卷
基金
美国国家科学基金会;
关键词
High entropy alloy; Dynamic loading; Deformation twins; Mechanical property; HIGH-STRAIN-RATE; STAINLESS-STEEL; MICROSTRUCTURE; ELEMENTS; STRESS; DESIGN; ENERGY; FLOW;
D O I
10.1016/j.msea.2018.05.001
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The mechanical properties and microstructure evolution of dual-phase Al0.6CoCrFeNi high-entropy alloys (HEM) upon dynamic loading are investigated. Dynamic impact tests with varying strain rates of 2800-4000 s(-1) at room temperature are performed by the split-Hopkinson pressure bar (SHPB). The yielding strengths evidently increase with increasing the strain rate for the present system. The high strain-rate sensitivity (SRS) parameter is extracted from the observed stress-strain responses. A modified Johnson-Cook (J-C) plasticity constitutive model is proposed to characterize the dynamic flow behavior. Nanoscale deformation twins induced by dynamic loading, accompanied by high density dislocation substructures, realize the excellent strength-ductility combination. According to the critical stress theory, the stacking fault energy (SFE) of the FCC phase can be estimated to be about 36 mJ/m(2), which is evidently lower than the overall SFE for the Al0.6CoCrFeNi HEA.
引用
收藏
页码:208 / 213
页数:6
相关论文
共 44 条
[1]  
[Anonymous], 1994, Dynamic Behavior of Materials, P66
[2]  
Bouaziz O., 2015, CURR OPIN SOLID ST M, V15, P141
[3]   Plastic deformation in 316LN stainless steel - characterization of deformation microstructures [J].
Byun, TS ;
Lee, EH ;
Hunn, JD .
JOURNAL OF NUCLEAR MATERIALS, 2003, 321 (01) :29-39
[4]   On the stress dependence of partial dislocation separation and deformation microstructure in austenitic stainless steels [J].
Byun, TS .
ACTA MATERIALIA, 2003, 51 (11) :3063-3071
[5]   The influence of Al elements on the structure and the creep behavior of AlxCoCrFeNi high entropy alloys [J].
Cao, Tieshan ;
Shang, Jianlu ;
Zhao, Jie ;
Cheng, Congqian ;
Wang, Rui ;
Wang, Hui .
MATERIALS LETTERS, 2016, 164 :344-347
[6]  
Chen WNW, 2011, MECH ENG SER, P1, DOI 10.1007/978-1-4419-7982-7
[7]   DEFORMATION TWINNING [J].
CHRISTIAN, JW ;
MAHAJAN, S .
PROGRESS IN MATERIALS SCIENCE, 1995, 39 (1-2) :1-157
[8]   Design of a twinning-induced plasticity high entropy alloy [J].
Deng, Y. ;
Tasan, C. C. ;
Pradeep, K. G. ;
Springer, H. ;
Kostka, A. ;
Raabe, D. .
ACTA MATERIALIA, 2015, 94 :124-133
[9]  
Dodd B, 2012, ELSEV INSIGHT, P1
[10]   Twinning-induced plasticity (TWIP) and work hardening in Ti-based metallic glass matrix composites [J].
Fan, J. ;
Qiao, J. W. ;
Wang, Z. H. ;
Rao, W. ;
Kang, G. Z. .
SCIENTIFIC REPORTS, 2017, 7